Compare commits

...

No commits in common. "v130.0.6723.40-5" and "master" have entirely different histories.

11628 changed files with 1017458 additions and 245971 deletions

View file

@ -10,7 +10,7 @@ defaults:
shell: bash
working-directory: src
env:
CACHE_EPOCH: 4
CACHE_EPOCH: 1
CCACHE_MAXSIZE: 200M
CCACHE_MAXFILES: 0
SCCACHE_CACHE_SIZE: 200M
@ -396,8 +396,8 @@ jobs:
openwrt: "target=sunxi subtarget=cortexa53"
target_cpu: arm64
extra: 'arm_cpu="cortex-a53" build_static=true use_allocator_shim=false use_partition_alloc=false'
openwrt_release: '23.05.0'
openwrt_gcc_ver: '12.3.0'
openwrt_release: '24.10.0'
openwrt_gcc_ver: '13.3.0'
- arch: aarch64_cortex-a72
openwrt: "target=mvebu subtarget=cortexa72"
target_cpu: arm64
@ -406,8 +406,14 @@ jobs:
openwrt: "target=mvebu subtarget=cortexa72"
target_cpu: arm64
extra: 'arm_cpu="cortex-a72" build_static=true use_allocator_shim=false use_partition_alloc=false'
openwrt_release: '23.05.0'
openwrt_gcc_ver: '12.3.0'
openwrt_release: '24.10.0'
openwrt_gcc_ver: '13.3.0'
- arch: aarch64_cortex-a76
openwrt: "target=bcm27xx subtarget=bcm2712"
target_cpu: arm64
extra: 'arm_cpu="cortex-a76"'
openwrt_release: '24.10.0'
openwrt_gcc_ver: '13.3.0'
- arch: aarch64_generic
openwrt: "target=layerscape subtarget=armv8_64b"
target_cpu: arm64
@ -415,8 +421,8 @@ jobs:
openwrt: "target=layerscape subtarget=armv8_64b"
target_cpu: arm64
extra: "build_static=true use_allocator_shim=false use_partition_alloc=false"
openwrt_release: '23.05.0'
openwrt_gcc_ver: '12.3.0'
openwrt_release: '24.10.0'
openwrt_gcc_ver: '13.3.0'
- arch: arm_arm1176jzf-s_vfp
openwrt: "target=brcm2708 subtarget=bcm2708"
target_cpu: arm
@ -447,8 +453,8 @@ jobs:
openwrt: "target=sunxi subtarget=cortexa7"
target_cpu: arm
extra: 'arm_version=0 arm_cpu="cortex-a7" arm_fpu="neon-vfpv4" arm_float_abi="hard" arm_use_neon=true build_static=true use_allocator_shim=false use_partition_alloc=false'
openwrt_release: '23.05.0'
openwrt_gcc_ver: '12.3.0'
openwrt_release: '24.10.0'
openwrt_gcc_ver: '13.3.0'
- arch: arm_cortex-a7_vfpv4
openwrt: "target=at91 subtarget=sama7"
target_cpu: arm
@ -467,8 +473,8 @@ jobs:
openwrt: "target=bcm53xx subtarget=generic"
target_cpu: arm
extra: 'arm_version=0 arm_cpu="cortex-a9" arm_float_abi="soft" arm_use_neon=false build_static=true use_allocator_shim=false use_partition_alloc=false'
openwrt_release: '23.05.0'
openwrt_gcc_ver: '12.3.0'
openwrt_release: '24.10.0'
openwrt_gcc_ver: '13.3.0'
- arch: arm_cortex-a9_neon
openwrt: "target=imx6 subtarget=generic"
target_cpu: arm
@ -493,8 +499,8 @@ jobs:
openwrt: "target=ramips subtarget=rt305x"
target_cpu: mipsel
extra: 'mips_arch_variant="r2" mips_float_abi="soft" build_static=true use_allocator_shim=false use_partition_alloc=false'
openwrt_release: '23.05.0'
openwrt_gcc_ver: '12.3.0'
openwrt_release: '24.10.0'
openwrt_gcc_ver: '13.3.0'
- arch: mipsel_mips32
openwrt: "target=brcm47xx subtarget=legacy"
target_cpu: mipsel
@ -505,7 +511,7 @@ jobs:
openwrt_release: '23.05.0'
openwrt_gcc_ver: '12.3.0'
env:
EXTRA_FLAGS: target_cpu="${{ matrix.target_cpu }}" target_os="openwrt" ${{ matrix.extra }}
EXTRA_FLAGS: target_cpu="${{ matrix.target_cpu }}" target_os="openwrt" ${{ matrix.extra }} enable_shadow_metadata=false
OPENWRT_FLAGS: arch=${{ matrix.arch }} release=${{ matrix.openwrt_release || '18.06.0' }} gcc_ver=${{ matrix.openwrt_gcc_ver || '7.3.0' }} ${{ matrix.openwrt }}
BUNDLE: naiveproxy-${{ github.event.release.tag_name }}-${{ github.job }}-${{ matrix.arch }}
steps:

View file

@ -1 +1 @@
130.0.6723.40
134.0.6998.39

View file

@ -82,7 +82,6 @@ Or `quic://user:pass@example.com`, if it works better. See also [parameter usage
* [v2rayN](https://github.com/2dust/v2rayN), GUI client, Windows
* [NekoBox for Android](https://github.com/MatsuriDayo/NekoBoxForAndroid), Proxy toolchain, Android
* [NekoRay / NekoBox For PC](https://github.com/MatsuriDayo/nekoray), Qt based GUI, Windows, Linux
* [Yet Another Shadow Socket](https://github.com/Chilledheart/yass), NaïveProxy-compatible forward proxy, Android, iOS, Windows, macOS, Linux, FreeBSD
## Notes for downstream

View file

@ -28,10 +28,10 @@ IncludeCategories:
# LINT.IfChange(winheader)
- Regex: '^<objbase\.h>' # This has to be before initguid.h.
Priority: 1
- Regex: '^<(initguid|mmdeviceapi|windows|winsock2|ws2tcpip|shobjidl|atlbase|ole2|unknwn|tchar|ocidl)\.h>'
- Regex: '^<(atlbase|initguid|mmdeviceapi|ocidl|ole2|shobjidl|tchar|unknwn|windows|winsock2|winternl|ws2tcpip)\.h>'
Priority: 2
# LINT.ThenChange(/tools/add_header.py:winheader)
# UIAutomation*.h need to be after base/win/atl.h.
# UIAutomation*.h needs to be after base/win/atl.h.
# Note the low priority number.
- Regex: '^<UIAutomation.*\.h>'
Priority: 6
@ -39,8 +39,11 @@ IncludeCategories:
- Regex: '^<.*\.h>'
Priority: 3
# C++ standard library headers.
- Regex: '^<.*'
- Regex: '^<.*>'
Priority: 4
# windows_h_disallowed.h should appear last. Note the low priority number.
- Regex: '"(.*/)?windows_h_disallowed\.h"'
Priority: 7
# Other libraries.
- Regex: '.*'
Priority: 5

View file

@ -90,7 +90,7 @@ no_check_targets = [
"//v8:v8_libplatform", # 2 errors
]
# These are the list of GN files that run exec_script. This whitelist exists
# These are the list of GN files that run exec_script. This allowlist exists
# to force additional review for new uses of exec_script, which is strongly
# discouraged.
#
@ -145,11 +145,11 @@ no_check_targets = [
# this situation much easier to create. if the build always lists the
# files and passes them to a script, it will always be correct.
exec_script_whitelist =
build_dotfile_settings.exec_script_whitelist +
exec_script_allowlist =
build_dotfile_settings.exec_script_allowlist +
angle_dotfile_settings.exec_script_whitelist +
[
# Whitelist entries for //build should go into
# Allowlist entries for //build should go into
# //build/dotfile_settings.gni instead, so that they can be shared
# with other repos. The entries in this list should be only for files
# in the Chromium repo outside of //build.

View file

@ -17,6 +17,7 @@ Aaron Jacobs <samusaaron3@gmail.com>
Aaron Leventhal <aaronlevbugs@gmail.com>
Aaron Randolph <aaron.randolph@gmail.com>
Aaryaman Vasishta <jem456.vasishta@gmail.com>
AbdAlRahman Gad <abdobngad@gmail.com>
Abdu Ameen <abdu.ameen000@gmail.com>
Abdullah Abu Tasneem <a.tasneem@samsung.com>
Abhijeet Kandalkar <abhijeet.k@samsung.com>
@ -117,6 +118,7 @@ Andreas Papacharalampous <andreas@apap04.com>
Andrei Borza <andrei.borza@gmail.com>
Andrei Parvu <andrei.prv@gmail.com>
Andrei Parvu <parvu@adobe.com>
Andrei Volykhin <andrei.volykhin@gmail.com>
Andres Salomon <dilinger@queued.net>
Andreu Botella <andreu@andreubotella.com>
Andrew Boyarshin <andrew.boyarshin@gmail.com>
@ -192,6 +194,7 @@ Ben Noordhuis <ben@strongloop.com>
Benedek Heilig <benecene@gmail.com>
Benjamin Dupont <bedupont@cisco.com>
Benjamin Jemlich <pcgod99@gmail.com>
Beomsik Min <beomsikm@gmail.com>
Bernard Cafarelli <voyageur@gentoo.org>
Bernhard M. Wiedemann <bwiedemann@suse.de>
Bert Belder <bertbelder@gmail.com>
@ -310,6 +313,7 @@ Daniel Lockyer <thisisdaniellockyer@gmail.com>
Daniel Nishi <dhnishi@gmail.com>
Daniel Platz <daplatz@googlemail.com>
Daniel Playfair Cal <daniel.playfair.cal@gmail.com>
Daniel Richard G. <iskunk@gmail.com>
Daniel Shaulov <dshaulov@ptc.com>
Daniel Trebbien <dtrebbien@gmail.com>
Daniel Waxweiler <daniel.waxweiler@gmail.com>
@ -327,8 +331,10 @@ Darshini KN <kn.darshini@samsung.com>
Dave Vandyke <kzar@kzar.co.uk>
David Benjamin <davidben@mit.edu>
David Brown <develop.david.brown@gmail.com>
David Cernoch <dcernoch@uplandsoftware.com>
David Davidovic <david@davidovic.io>
David Erceg <erceg.david@gmail.com>
David Faden <dfaden@gmail.com>
David Fox <david@davidjfox.com>
David Futcher <david.mike.futcher@gmail.com>
David Jin <davidjin@amazon.com>
@ -364,6 +370,7 @@ Diana Suvorova <diana.suvorova@gmail.com>
Diego Fernández Santos <agujaydedal@gmail.com>
Diego Ferreiro Val <elfogris@gmail.com>
Dillon Sellars <dill.sellars@gmail.com>
Dingming Liu <liudingming@bytedance.com>
Divya Bansal <divya.bansal@samsung.com>
Dmitry Shachnev <mitya57@gmail.com>
Dmitry Sokolov <dimanne@gmail.com>
@ -500,6 +507,7 @@ Hansel Lee <mr.hansel.lee@gmail.com>
Hanwen Zheng <eserinc.z@gmail.com>
Hao Li <hao.x.li@intel.com>
Haojian Wu <hokein.wu@gmail.com>
Haoran Tang <haoran.tang.personal@gmail.com>
Haoxuan Zhang <zhanghaoxuan.59@bytedance.com>
Hari Singh <hari.singh1@samsung.com>
Harpreet Singh Khurana <harpreet.sk@samsung.com>
@ -573,6 +581,7 @@ Ivan Naydonov <samogot@gmail.com>
Ivan Pavlotskiy <ivan.pavlotskiy@lgepartner.com>
Ivan Sham <ivansham@amazon.com>
Ivan Sidorov <ivansid@gmail.com>
Jacek Fedoryński <jfedor@gmail.com>
Jack Bates <jack@nottheoilrig.com>
Jack Shi <flystone2020@gmail.com>
Jackson Loeffler <j@jloeffler.com>
@ -580,6 +589,7 @@ Jacky Hu <flameddd@gmail.com>
Jacob Clark <jacob.jh.clark@googlemail.com>
Jacob Mandelson <jacob@mandelson.org>
Jaehun Lim <ljaehun.lim@samsung.com>
Jaehyun Chung <jaehyun.chung@amd.com>
Jaehyun Ko <jaehyun.dev@gmail.com>
Jaehyun Lee <j-hyun.lee@samsung.com>
Jaekyeom Kim <btapiz@gmail.com>
@ -619,8 +629,10 @@ Jared Wein <weinjared@gmail.com>
Jari Karppanen <jkarp@amazon.com>
Jason Gronn <jasontopia03@gmail.com>
Javayhu <javayhu@gmail.com>
Jay Kapadia <jaykapadia389@gmail.com>
Jay Oster <jay@kodewerx.org>
Jay Soffian <jaysoffian@gmail.com>
Jay Yang <sjyang1126@gmail.com>
Jeado Ko <haibane84@gmail.com>
Jeffrey C <jeffreyca16@gmail.com>
Jeffrey Yeung <jeffrey.yeung@poly.com>
@ -719,6 +731,7 @@ Joseph Lolak <joseph.lolak@samsung.com>
Josh Triplett <josh.triplett@intel.com>
Josh Triplett <josh@joshtriplett.org>
Joshua Lock <joshua.lock@intel.com>
Joshua Olaoye <joshuaolaoye46@gmail.com>
Joshua Roesslein <jroesslein@gmail.com>
Josué Ratelle <jorat1346@gmail.com>
Josyula Venkat Narasimham <venkat.nj@samsung.com>
@ -753,7 +766,7 @@ Jüri Valdmann <juri.valdmann@qt.io>
Juyoung Kim <chattank05@gmail.com>
Jingge Yu <jinggeyu423@gmail.com>
Jing Peiyang <jingpeiyang@eswincomputing.com>
Jinli Wu <wujinli.cn@gmail.com>
Jinli Wu <wujinli@bytedance.com>
K. M. Merajul Arefin <m.arefin@samsung.com>
Kai Jiang <jiangkai@gmail.com>
Kai Köhne <kai.koehne@qt.io>
@ -768,6 +781,7 @@ Kangyuan Shu <kangyuan.shu@intel.com>
Karan Thakkar <karanjthakkar@gmail.com>
Karel Král <kralkareliv@gmail.com>
Karl <karlpolicechromium@gmail.com>
Karl Piper <karl4piper@gmail.com>
Kartikey Bhatt <kartikey@amazon.com>
Kaspar Brand <googlecontrib@velox.ch>
Kaushalendra Mishra <k.mishra@samsung.com>
@ -927,6 +941,7 @@ Martin Persson <mnpn03@gmail.com>
Martin Rogalla <martin@martinrogalla.com>
Martina Kollarova <martina.kollarova@intel.com>
Martino Fontana <tinozzo123@gmail.com>
Marvin Giessing <marvin.giessing@gmail.com>
Masahiro Yado <yado.masa@gmail.com>
Masaru Nishida <msr.i386@gmail.com>
Masayuki Wakizaka <mwakizaka0108@gmail.com>
@ -937,6 +952,7 @@ Mathieu Meisser <mmeisser@logitech.com>
Matt Arpidone <mma.public@gmail.com>
Matt Fysh <mattfysh@gmail.com>
Matt Harding <majaharding@gmail.com>
Matt Jolly <kangie@gentoo.org>
Matt Strum <mstrum@amazon.com>
Matt Zeunert <matt@mostlystatic.com>
Matthew "strager" Glazar <strager.nds@gmail.com>
@ -960,16 +976,19 @@ Mc Zeng <zengmcong@gmail.com>
Md Abdullah Al Alamin <a.alamin.cse@gmail.com>
Md. Hasanur Rashid <hasanur.r@samsung.com>
Md Hasibul Hasan <hasibulhasan873@gmail.com>
Md Hasibul Hasan <hasibul.h@samsung.com>
Md Jobed Hossain <jobed.h@samsung.com>
Md Raiyan bin Sayeed <mrbsayee@uwaterloo.ca>
Md. Sadiqul Amin <sadiqul.amin@samsung.com>
Md Sami Uddin <md.sami@samsung.com>
Mego Tan <tannal2409@gmail.com>
Merajul Arefin <merajularefin@gmail.com>
Micha Hanselmann <micha.hanselmann@gmail.com>
Michael Cirone <mikecirone@gmail.com>
Michael Constant <mconst@gmail.com>
Michael Forney <mforney@mforney.org>
Michael Gilbert <floppymaster@gmail.com>
Michael Herrmann <michael@herrmann.io>
Michael Kolomeytsev <michael.kolomeytsev@gmail.com>
Michael Lopez <lopes92290@gmail.com>
Michael Morrison <codebythepound@gmail.com>
@ -990,6 +1009,7 @@ Milko Leporis <milko.leporis@imgtec.com>
Milton Chiang <milton.chiang@mediatek.com>
Milutin Smiljanic <msmiljanic.gm@gmail.com>
Minchul Kang <tegongkang@gmail.com>
Ming Lei <minggeorgelei@gmail.com>
Mingeun Park <mindal99546@gmail.com>
Minggang Wang <minggang.wang@intel.com>
Mingmin Xie <melvinxie@gmail.com>
@ -1006,10 +1026,13 @@ Mitchell Cohen <mitchell@agilebits.com>
Miyoung Shin <myid.shin@navercorp.com>
Mohamed I. Hammad <ibraaaa@gmail.com>
Mohamed Mansour <m0.interactive@gmail.com>
Mohamed Hany Youns <mohamedhyouns@gmail.com>
Mohammad Azam <m.azam@samsung.com>
MohammadSabri <mohammad.kh.sabri@exalt.ps>
Mohammed Wajahat Ali Siddiqui <wajahat.s@samsung.com>
Mohan Reddy <mohan.reddy@samsung.com>
Mohit Bhalla <bhallam@amazon.com>
Mohraiel Matta <mohraielmatta@gmail.com>
Moiseanu Rares-Marian <moiseanurares@gmail.com>
Momoka Yamamoto <momoka.my6@gmail.com>
Momoko Hattori <momohatt10@gmail.com>
@ -1047,6 +1070,7 @@ Nidhi Jaju <nidhijaju127@gmail.com>
Niek van der Maas <mail@niekvandermaas.nl>
Nik Pavlov <nikita.pavlov.dev@gmail.com>
Nikhil Bansal <n.bansal@samsung.com>
Nikhil Meena <iakhilmeena@gmail.com>
Nikhil Sahni <nikhil.sahni@samsung.com>
Nikita Ofitserov <himikof@gmail.com>
Niklas Hambüchen <mail@nh2.me>
@ -1275,6 +1299,7 @@ Sergei Poletaev <spylogsster@gmail.com>
Sergei Romanov <rsv.981@gmail.com>
Sergey Romanov <svromanov@sberdevices.ru>
Sergey Kipet <sergey.kipet@gmail.com>
Sergey Markelov <sergionso@gmail.com>
Sergey Putilin <p.sergey@samsung.com>
Sergey Shekyan <shekyan@gmail.com>
Sergey Talantov <sergey.talantov@gmail.com>
@ -1442,6 +1467,7 @@ Tom Harwood <tfh@skip.org>
Tomas Popela <tomas.popela@gmail.com>
Tomasz Edward Posłuszny <tom@devpeer.net>
Tony Shen <legendmastertony@gmail.com>
Topi Lassila <tolassila@gmail.com>
Torsten Kurbad <google@tk-webart.de>
Toshihito Kikuchi <leamovret@gmail.com>
Toshiaki Tanaka <zokutyou2@gmail.com>
@ -1485,6 +1511,7 @@ Vishal Bhatnagar <vishal.b@samsung.com>
Vishal Lingam <vishal.reddy@samsung.com>
Vitaliy Kharin <kvserr@gmail.com>
Vivek Galatage <vivek.vg@samsung.com>
Vlad Zahorodnii <vlad.zahorodnii@kde.org>
Volker Sorge <volker.sorge@gmail.com>
Waihung Fu <fufranci@amazon.com>
wafuwafu13 <mariobaske@i.softbank.jp>
@ -1492,6 +1519,7 @@ Wojciech Bielawski <wojciech.bielawski@gmail.com>
Wang Chen <wangchen20@iscas.ac.cn>
Wang Chen <unicornxw@gmail.com>
Wang Weiwei <wangww@dingdao.com>
Wang Zirui <kingzirvi@gmail.com>
Wangyang Dai <jludwy@gmail.com>
Wanming Lin <wanming.lin@intel.com>
Wei Li <wei.c.li@intel.com>
@ -1600,6 +1628,7 @@ Zeqin Chen <talonchen@tencent.com>
Zhanbang He <hezhanbang@gmail.com>
Zhang Hao <zhanghao.m@bytedance.com>
Zhang Hao <15686357310a@gmail.com>
Zhao Qin <qzmiss@gmail.com>
Zhaoming Jiang <zhaoming.jiang@intel.com>
Zhaoze Zhou <zhaoze.zhou@partner.samsung.com>
Zheda Chen <zheda.chen@intel.com>
@ -1625,6 +1654,7 @@ Zsolt Borbely <zsborbely.u-szeged@partner.samsung.com>
迷渡 <justjavac@gmail.com>
郑苏波 (Super Zheng) <superzheng@tencent.com>
一丝 (Yisi) <yiorsi@gmail.com>
林训杰 (XunJie Lin) <wick.linxunjie@gmail.com>
# Please DO NOT APPEND here. See comments at the top of the file.
# END individuals section.
@ -1654,6 +1684,7 @@ EngFlow, Inc. <*@engflow.com>
Estimote, Inc. <*@estimote.com>
Google Inc. <*@google.com>
Grammarly, Inc. <*@grammarly.com>
Here Inc. <*@here.io>
Hewlett-Packard Development Company, L.P. <*@hp.com>
HyperConnect Inc. <*@hpcnt.com>
IBM Inc. <*@*.ibm.com>
@ -1683,6 +1714,7 @@ NVIDIA Corporation <*@nvidia.com>
OpenFin Inc. <*@openfin.co>
Opera Software ASA <*@opera.com>
Optical Tone Ltd <*@opticaltone.com>
Palo Alto Networks, Inc. <*@paloaltonetworks.com>
Pengutronix e.K. <*@pengutronix.de>
Quality First Software GmbH <*@qf-software.com>
Rakuten Kobo Inc. <*@kobo.com>

View file

@ -12,7 +12,6 @@ import("//build/config/compiler/compiler.gni")
import("//build/config/cronet/config.gni")
import("//build/config/dcheck_always_on.gni")
import("//build/config/features.gni")
import("//build/config/ios/config.gni")
import("//build/config/rust.gni")
import("//build/config/sanitizers/sanitizers.gni")
import("//build/config/ui.gni")

1502
src/DEPS

File diff suppressed because it is too large Load diff

View file

@ -29,8 +29,6 @@ import("//build/config/chromeos/ui_mode.gni")
import("//build/config/compiler/compiler.gni")
import("//build/config/cronet/config.gni")
import("//build/config/dcheck_always_on.gni")
import("//build/config/features.gni")
import("//build/config/ios/config.gni")
import("//build/config/logging.gni")
import("//build/config/nacl/config.gni")
import("//build/config/profiling/profiling.gni")
@ -43,6 +41,9 @@ import("//build/util/process_version.gni")
import("//build_overrides/build.gni")
if (is_ios) {
# Used to access target_environment.
import("//build/config/apple/mobile_config.gni")
# Used to access ios_is_app_extension variable definition.
import("//build/config/ios/ios_sdk.gni")
}
@ -101,30 +102,6 @@ if (is_fuchsia) {
import("//third_party/fuchsia-gn-sdk/src/fidl_library.gni")
}
# The Rust implementation of base::JSONReader. NaCl depends on base and doesn't
# have a Rust toolchain, so we need a fallback to C++ for it until it removes
# its dependency on //base.
#
# TODO(crbug.com/40811643): Drop toolchain_has_rust and move the C++ parser into
# components/nacl to just run in-process there. Don't compile base::JSONReader
# on NaCL at all.
build_rust_json_reader = toolchain_has_rust && enable_rust_json
# Rust to C++ type conversions. Also can not be enabled while NaCl depends on
# //base.
build_rust_base_conversions = toolchain_has_rust && enable_rust_base_conversions
assert(build_rust_base_conversions || !build_rust_json_reader,
"Cannot enable Rust JSON decoder without also base conversions")
buildflag_header("rust_buildflags") {
header = "rust_buildflags.h"
flags = [
"BUILD_RUST_JSON_READER=$build_rust_json_reader",
"BUILD_RUST_BASE_CONVERSIONS=$build_rust_base_conversions",
]
}
if (is_win) {
# This is in a separate config so the flags can be applied to dependents.
# ldflags in GN aren't automatically inherited.
@ -194,8 +171,6 @@ component("base") {
"allocator/dispatcher/internal/dispatch_data.h",
"allocator/dispatcher/internal/dispatcher_internal.h",
"allocator/dispatcher/internal/tools.h",
"allocator/dispatcher/memory_tagging.cc",
"allocator/dispatcher/memory_tagging.h",
"allocator/dispatcher/notification_data.h",
"allocator/dispatcher/reentry_guard.cc",
"allocator/dispatcher/reentry_guard.h",
@ -206,6 +181,7 @@ component("base") {
"at_exit.h",
"atomic_ref_count.h",
"atomic_sequence_num.h",
"atomicops.cc",
"atomicops.h",
"atomicops_internals_atomicword_compat.h",
"atomicops_internals_portable.h",
@ -237,11 +213,11 @@ component("base") {
"compiler_specific.h",
"component_export.h",
"containers/adapters.h",
"containers/adapters_internal.h",
"containers/buffer_iterator.h",
"containers/checked_iterators.h",
"containers/circular_deque.h",
"containers/contains.h",
"containers/dynamic_extent.h",
"containers/enum_set.h",
"containers/extend.h",
"containers/fixed_flat_map.h",
@ -292,6 +268,7 @@ component("base") {
"export_template.h",
"feature_list.cc",
"feature_list.h",
"feature_visitor.h",
"features.cc",
"features.h",
"file_version_info.h",
@ -358,6 +335,7 @@ component("base") {
"location.h",
"logging.cc",
"logging.h",
"logging/log_severity.h",
"macros/concat.h",
"macros/if.h",
"macros/is_empty.h",
@ -365,6 +343,7 @@ component("base") {
"macros/uniquify.h",
"memory/aligned_memory.cc",
"memory/aligned_memory.h",
"memory/asan_interface.h",
"memory/free_deleter.h",
"memory/memory_pressure_listener.cc",
"memory/memory_pressure_listener.h",
@ -390,7 +369,6 @@ component("base") {
"memory/raw_ptr_cast.h",
"memory/raw_ptr_exclusion.h",
"memory/raw_ref.h",
"memory/raw_scoped_refptr_mismatch_checker.h",
"memory/raw_span.h",
"memory/read_only_shared_memory_region.cc",
"memory/read_only_shared_memory_region.h",
@ -427,6 +405,8 @@ component("base") {
"memory/weak_ptr.h",
"memory/writable_shared_memory_region.cc",
"memory/writable_shared_memory_region.h",
"message_loop/io_watcher.cc",
"message_loop/io_watcher.h",
"message_loop/message_pump.cc",
"message_loop/message_pump.h",
"message_loop/message_pump_default.cc",
@ -480,6 +460,7 @@ component("base") {
"metrics/record_histogram_checker.h",
"metrics/sample_map.cc",
"metrics/sample_map.h",
"metrics/sample_map_iterator.h",
"metrics/sample_vector.cc",
"metrics/sample_vector.h",
"metrics/single_sample_metrics.cc",
@ -539,16 +520,18 @@ component("base") {
"process/process_info.h",
"process/set_process_title.cc",
"process/set_process_title.h",
"profiler/call_stack_profile_params.h",
"profiler/core_unwinders.h",
"profiler/frame.cc",
"profiler/frame.h",
"profiler/metadata_recorder.cc",
"profiler/metadata_recorder.h",
"profiler/module_cache.cc",
"profiler/module_cache.h",
"profiler/process_type.h",
"profiler/periodic_sampling_scheduler.cc",
"profiler/periodic_sampling_scheduler.h",
"profiler/profile_builder.h",
"profiler/register_context.h",
"profiler/register_context_registers.h",
"profiler/sample_metadata.cc",
"profiler/sample_metadata.h",
"profiler/sampling_profiler_thread_token.cc",
@ -567,14 +550,13 @@ component("base") {
"profiler/stack_unwind_data.h",
"profiler/suspendable_thread_delegate.h",
"profiler/thread_delegate.h",
"profiler/thread_group_profiler.cc",
"profiler/thread_group_profiler.h",
"profiler/thread_group_profiler_client.h",
"profiler/unwinder.cc",
"profiler/unwinder.h",
"rand_util.cc",
"rand_util.h",
"ranges/algorithm.h",
"ranges/from_range.h",
"ranges/functional.h",
"ranges/ranges.h",
"run_loop.cc",
"run_loop.h",
"sampling_heap_profiler/lock_free_address_hash_set.cc",
@ -613,12 +595,14 @@ component("base") {
"strings/pattern.h",
"strings/safe_sprintf.cc",
"strings/safe_sprintf.h",
"strings/span_printf.h",
"strings/strcat.cc",
"strings/strcat.h",
"strings/strcat_internal.h",
"strings/string_number_conversions.cc",
"strings/string_number_conversions.h",
"strings/string_number_conversions_internal.h",
"strings/string_slice.h",
"strings/string_split.cc",
"strings/string_split.h",
"strings/string_split_internal.h",
@ -649,6 +633,8 @@ component("base") {
"supports_user_data.h",
"synchronization/atomic_flag.cc",
"synchronization/atomic_flag.h",
"synchronization/cancelable_event.cc",
"synchronization/cancelable_event.h",
"synchronization/condition_variable.h",
"synchronization/lock.cc",
"synchronization/lock.h",
@ -704,7 +690,6 @@ component("base") {
"task/sequence_manager/enqueue_order_generator.h",
"task/sequence_manager/fence.cc",
"task/sequence_manager/fence.h",
"task/sequence_manager/lazily_deallocated_deque.h",
"task/sequence_manager/sequence_manager.cc",
"task/sequence_manager/sequence_manager.h",
"task/sequence_manager/sequence_manager_impl.cc",
@ -892,6 +877,7 @@ component("base") {
"traits_bag.h",
"tuple.h",
"types/always_false.h",
"types/cxx23_from_range.h",
"types/cxx23_is_scoped_enum.h",
"types/cxx23_to_underlying.h",
"types/expected.h",
@ -905,11 +891,13 @@ component("base") {
"types/optional_ref.h",
"types/optional_util.h",
"types/pass_key.h",
"types/same_as_any.h",
"types/strong_alias.h",
"types/supports_ostream_operator.h",
"types/to_address.h",
"types/token_type.h",
"types/variant_util.h",
"types/zip.h",
"unguessable_token.cc",
"unguessable_token.h",
"uuid.cc",
@ -1002,10 +990,6 @@ component("base") {
]
}
if (is_chromeos_ash) {
sources += [ "feature_visitor.h" ]
}
if (is_linux || is_chromeos || is_android) {
sources += [
"files/file_path_watcher_inotify.cc",
@ -1050,12 +1034,8 @@ component("base") {
# to provide the appropriate `#define` here.
defines += [ "IS_RAW_PTR_IMPL" ]
if (build_rust_json_reader) {
deps += [ "//third_party/rust/serde_json_lenient/v0_2/wrapper" ]
}
# native_unwinder_android is intended for use solely via a dynamic feature
# module, to avoid increasing Chrome's executable size.
# native_unwinder_android is split into a separate target to avoid pulling
# libunwindstack dependencies into cronet's base.
assert_no_deps = [ ":native_unwinder_android" ]
public_deps = [
@ -1067,12 +1047,10 @@ component("base") {
":debugging_buildflags",
":feature_list_buildflags",
":ios_cronet_buildflags",
":logging_buildflags",
":orderfile_buildflags",
":power_monitor_buildflags",
":profiler_buildflags",
":protected_memory_buildflags",
":rust_buildflags",
":sanitizer_buildflags",
":synchronization_buildflags",
":tracing_buildflags",
@ -1085,17 +1063,6 @@ component("base") {
"//third_party/abseil-cpp:absl",
]
if (build_rust_base_conversions) {
sources += [
"containers/span_rust.h",
"strings/string_view_rust.h",
]
# Base provides conversions between CXX types and base types (e.g.
# std::string_view).
public_deps += [ "//build/rust:cxx_cppdeps" ]
}
# Needed for <atomic> if using newer C++ library than sysroot, except if
# building inside the cros_sdk environment - use host_toolchain as a
# more robust check for this.
@ -1143,7 +1110,8 @@ component("base") {
"android/scoped_hardware_buffer_fence_sync.h",
"android/scoped_hardware_buffer_handle.cc",
"android/scoped_hardware_buffer_handle.h",
"android/sys_utils.h",
"android/scoped_input_event.cc",
"android/scoped_input_event.h",
"debug/stack_trace_android.cc",
"files/file_util_android.cc",
"files/scoped_file_android.cc",
@ -1183,18 +1151,12 @@ component("base") {
# well when doing a component build.
public_configs = [ ":android_system_libs" ]
if (can_unwind_with_cfi_table) {
sources += [
"trace_event/cfi_backtrace_android.cc",
"trace_event/cfi_backtrace_android.h",
]
}
if (current_cpu == "arm") {
sources += [
"profiler/chrome_unwind_info_android.cc",
"profiler/chrome_unwind_info_android.h",
"profiler/chrome_unwinder_android.cc",
"profiler/chrome_unwinder_android.h",
"profiler/chrome_unwind_info_android_32.cc",
"profiler/chrome_unwind_info_android_32.h",
"profiler/chrome_unwinder_android_32.cc",
"profiler/chrome_unwinder_android_32.h",
]
}
@ -1237,6 +1199,8 @@ component("base") {
"android/jni_array.h",
"android/jni_bytebuffer.cc",
"android/jni_bytebuffer.h",
"android/jni_callback.cc",
"android/jni_callback.h",
"android/jni_registrar.cc",
"android/jni_registrar.h",
"android/jni_string.cc",
@ -1468,6 +1432,8 @@ component("base") {
"debug/crash_logging.h",
"debug/stack_trace.cc",
"debug/stack_trace.h",
"files/drive_info.cc",
"files/drive_info.h",
"files/file_enumerator.cc",
"files/file_enumerator.h",
"files/file_proxy.cc",
@ -1484,6 +1450,8 @@ component("base") {
"files/scoped_temp_file.h",
"json/json_file_value_serializer.cc",
"json/json_file_value_serializer.h",
"logging/rust_log_integration.cc",
"logging/rust_log_integration.h",
"memory/discardable_memory.cc",
"memory/discardable_memory.h",
"memory/discardable_memory_allocator.cc",
@ -1556,6 +1524,10 @@ component("base") {
"files/file_util_posix.cc",
"memory/page_size_posix.cc",
]
if (!is_apple) {
sources += [ "files/drive_info_posix.cc" ]
}
}
if ((is_posix && !is_ios) || is_fuchsia) {
@ -1588,6 +1560,13 @@ component("base") {
if (is_posix && !is_ios) {
sources += [ "process/process_posix.cc" ]
}
if (!is_win && !is_chromeos && !is_android && !is_linux) {
sources += [ "synchronization/cancelable_event_default.cc" ]
}
if (is_linux || is_chromeos || is_android) {
sources += [ "synchronization/cancelable_event_posix.cc" ]
}
if (use_blink) {
sources += [
@ -1622,8 +1601,12 @@ component("base") {
]
}
if (use_partition_alloc) {
# Add stuff that doesn't work in NaCl.
# Add stuff that doesn't work in NaCl or other environments that disable
# partition_alloc.
sources += [
"allocator/dispatcher/memory_tagging.cc",
"allocator/dispatcher/memory_tagging.h",
# PartitionAlloc uses SpinLock, which doesn't work in NaCl (see below).
"allocator/miracle_parameter.cc",
"allocator/miracle_parameter.h",
@ -1633,15 +1616,9 @@ component("base") {
"allocator/partition_alloc_support.h",
]
}
# Need this to pass gn check, because gn check doesn't see
# BUILDFLAG(USE_PARTITION_ALLOC). A linker will remove all
# partition_alloc code if use_partition_alloc = false because no code uses
# partition_alloc.
public_deps += [
"allocator/partition_allocator:partition_alloc",
"allocator/partition_allocator:raw_ptr",
]
if (use_allocator_shim) {
public_deps += [ "allocator/partition_allocator:allocator_shim" ]
}
}
# Windows.
@ -1660,6 +1637,7 @@ component("base") {
"enterprise_util_win.cc",
"file_version_info_win.cc",
"file_version_info_win.h",
"files/drive_info_win.cc",
"files/file_enumerator_win.cc",
"files/file_path_watcher_win.cc",
"files/file_util_win.cc",
@ -1687,6 +1665,7 @@ component("base") {
"process/process_iterator_win.cc",
"process/process_metrics_win.cc",
"process/process_win.cc",
"profiler/core_unwinders_win.cc",
"profiler/module_cache_win.cc",
"profiler/native_unwinder_win.cc",
"profiler/native_unwinder_win.h",
@ -1707,6 +1686,7 @@ component("base") {
"strings/string_util_win.h",
"strings/sys_string_conversions_win.cc",
"sync_socket_win.cc",
"synchronization/cancelable_event_win.cc",
"synchronization/condition_variable_win.cc",
"synchronization/lock_impl_win.cc",
"synchronization/waitable_event_watcher_win.cc",
@ -1749,6 +1729,8 @@ component("base") {
"win/event_trace_controller.h",
"win/event_trace_provider.cc",
"win/event_trace_provider.h",
"win/hardware_check.cc",
"win/hardware_check.h",
"win/hstring_reference.cc",
"win/hstring_reference.h",
"win/i18n.cc",
@ -1760,10 +1742,12 @@ component("base") {
"win/message_window.h",
"win/nt_status.cc",
"win/nt_status.h",
"win/ntsecapi_shim.h",
"win/object_watcher.cc",
"win/object_watcher.h",
"win/patch_util.cc",
"win/patch_util.h",
"win/pdh_shim.h",
"win/pe_image_reader.cc",
"win/pe_image_reader.h",
"win/post_async_results.h",
@ -1782,6 +1766,7 @@ component("base") {
"win/scoped_co_mem.h",
"win/scoped_com_initializer.cc",
"win/scoped_com_initializer.h",
"win/scoped_gdi_object.cc",
"win/scoped_gdi_object.h",
"win/scoped_handle.cc",
"win/scoped_handle.h",
@ -1821,10 +1806,13 @@ component("base") {
"win/variant_vector.h",
"win/vector.cc",
"win/vector.h",
"win/wbemidl_shim.h",
"win/win_handle_types.h",
"win/win_handle_types_list.inc",
"win/win_util.cc",
"win/win_util.h",
"win/winbase_shim.h",
"win/wincred_shim.h",
"win/wincrypt_shim.h",
"win/window_enumerator.cc",
"win/window_enumerator.h",
@ -1838,6 +1826,7 @@ component("base") {
"win/winrt_foundation_helpers.h",
"win/winrt_storage_util.cc",
"win/winrt_storage_util.h",
"win/wintrust_shim.h",
"win/wmi.cc",
"win/wmi.h",
"win/wrapped_window_proc.cc",
@ -1918,6 +1907,7 @@ component("base") {
"apple/scoped_typeref.h",
"file_version_info_apple.h",
"file_version_info_apple.mm",
"files/drive_info_apple.mm",
"files/file_util_apple.mm",
"memory/platform_shared_memory_mapper_apple.cc",
"memory/platform_shared_memory_region_apple.cc",
@ -1944,6 +1934,8 @@ component("base") {
# Desktop Mac.
if (is_mac) {
sources += [
"apple/mach_port_rendezvous.cc",
"apple/mach_port_rendezvous.h",
"enterprise_util.cc",
"enterprise_util.h",
"enterprise_util_mac.mm",
@ -1955,6 +1947,11 @@ component("base") {
"mac/authorization_util.h",
"mac/authorization_util.mm",
"mac/close_nocancel.cc",
"mac/code_signature.cc",
"mac/code_signature.h",
"mac/code_signature_spi.h",
"mac/info_plist_data.h",
"mac/info_plist_data.mm",
"mac/launch_application.h",
"mac/launch_application.mm",
"mac/launch_services_spi.h",
@ -1964,10 +1961,10 @@ component("base") {
"mac/login_util.h",
"mac/mac_util.h",
"mac/mac_util.mm",
"mac/mach_port_rendezvous.cc",
"mac/mach_port_rendezvous.h",
"mac/os_crash_dumps.cc",
"mac/os_crash_dumps.h",
"mac/process_requirement.cc",
"mac/process_requirement.h",
"mac/scoped_aedesc.h",
"mac/scoped_authorizationref.h",
"mac/scoped_authorizationref.mm",
@ -1993,10 +1990,11 @@ component("base") {
"process/port_provider_mac.cc",
"process/port_provider_mac.h",
"process/process_handle_mac.cc",
"process/process_info_mac.cc",
"process/process_info_mac.mm",
"process/process_iterator_mac.cc",
"process/process_mac.cc",
"process/process_metrics_mac.cc",
"profiler/core_unwinders_mac.cc",
"profiler/frame_pointer_unwinder.cc",
"profiler/frame_pointer_unwinder.h",
"profiler/stack_sampler_mac.cc",
@ -2015,6 +2013,7 @@ component("base") {
"ApplicationServices.framework",
"AppKit.framework",
"CoreFoundation.framework",
"DiskArbitration.framework",
"IOKit.framework",
"OpenDirectory.framework",
]
@ -2038,6 +2037,7 @@ component("base") {
"power_monitor/power_monitor_device_source_ios.mm",
"process/process_metrics_ios.cc",
"process/process_metrics_posix.cc",
"profiler/core_unwinders_ios.cc",
"profiler/stack_sampler_ios.cc",
"system/sys_info_ios.mm",
]
@ -2052,12 +2052,12 @@ component("base") {
if (use_blink) {
sources += [
"apple/mach_port_rendezvous.cc",
"apple/mach_port_rendezvous.h",
"files/file_path_watcher_kqueue.cc",
"files/file_path_watcher_kqueue.h",
"files/file_path_watcher_mac.cc",
"ios/sim_header_shims.h",
"mac/mach_port_rendezvous.cc",
"mac/mach_port_rendezvous.h",
"process/kill_ios.cc",
"process/memory_mac.mm",
"process/port_provider_mac.cc",
@ -2222,7 +2222,10 @@ component("base") {
}
if ((is_posix && !is_apple && !is_android) || is_fuchsia) {
sources += [ "profiler/stack_sampler_posix.cc" ]
sources += [
"profiler/core_unwinders_posix.cc",
"profiler/stack_sampler_posix.cc",
]
}
if ((is_posix && !is_apple && !is_android && !is_chromeos) || is_fuchsia) {
@ -2247,8 +2250,6 @@ component("base") {
"trace_event/auto_open_close_event.h",
"trace_event/builtin_categories.cc",
"trace_event/builtin_categories.h",
"trace_event/category_registry.cc",
"trace_event/category_registry.h",
"trace_event/heap_profiler.h",
"trace_event/interned_args_helper.cc",
"trace_event/interned_args_helper.h",
@ -2275,13 +2276,14 @@ component("base") {
"trace_event/memory_usage_estimator.cc",
"trace_event/memory_usage_estimator.h",
"trace_event/optional_trace_event.h",
"trace_event/perfetto_proto_appender.cc",
"trace_event/perfetto_proto_appender.h",
"trace_event/process_memory_dump.cc",
"trace_event/process_memory_dump.h",
"trace_event/trace_arguments.cc",
"trace_event/trace_arguments.h",
"trace_event/trace_buffer.cc",
"trace_event/trace_buffer.h",
"trace_event/trace_category.h",
"trace_event/trace_config.cc",
"trace_event/trace_config.h",
"trace_event/trace_config_category_filter.cc",
@ -2289,11 +2291,8 @@ component("base") {
"trace_event/trace_event.h",
"trace_event/trace_event_impl.cc",
"trace_event/trace_event_impl.h",
"trace_event/trace_event_memory_overhead.cc",
"trace_event/trace_event_memory_overhead.h",
"trace_event/trace_log.cc",
"trace_event/trace_log.h",
"trace_event/trace_log_constants.cc",
"trace_event/traced_value.cc",
"trace_event/traced_value.h",
"trace_event/traced_value_support.h",
@ -2301,8 +2300,6 @@ component("base") {
"trace_event/tracing_agent.h",
"trace_event/typed_macros.h",
"trace_event/typed_macros_embedder_support.h",
"trace_event/typed_macros_internal.cc",
"trace_event/typed_macros_internal.h",
"tracing/perfetto_platform.cc",
"tracing/perfetto_platform.h",
"tracing/perfetto_task_runner.cc",
@ -2329,8 +2326,6 @@ component("base") {
sources += [
"trace_event/etw_interceptor_win.cc",
"trace_event/etw_interceptor_win.h",
"trace_event/trace_event_etw_export_win.cc",
"trace_event/trace_event_etw_export_win.h",
"trace_event/trace_logging_minimal_win.cc",
"trace_event/trace_logging_minimal_win.h",
]
@ -2466,12 +2461,6 @@ buildflag_header("feature_list_buildflags") {
}
}
buildflag_header("logging_buildflags") {
header = "logging_buildflags.h"
flags = [ "ENABLE_LOG_ERROR_NOT_REACHED=$enable_log_error_not_reached" ]
}
buildflag_header("orderfile_buildflags") {
header = "orderfile_buildflags.h"
header_dir = "base/android/orderfile"

View file

@ -3,6 +3,7 @@ include_rules = [
"+third_party/apple_apsl",
"+third_party/boringssl/src/include",
"+third_party/ced",
"+third_party/fuzztest",
# We are moving the old jni_generator to jni_zero, some references will remain
# in //base.
"+third_party/jni_zero",

View file

@ -4,7 +4,6 @@ set noparent
# NOTE: keep this in sync with global-owners-override@chromium.org owners
# by emailing lsc-policy@chromium.org when this list changes.
altimin@chromium.org
danakj@chromium.org
dcheng@chromium.org
fdoray@chromium.org
gab@chromium.org

View file

@ -21,4 +21,4 @@ constexpr size_t kMaximumNumberOfObservers = 4;
} // namespace base::allocator::dispatcher::configuration
#endif // BASE_ALLOCATOR_DISPATCHER_CONFIGURATION_H_
#endif // BASE_ALLOCATOR_DISPATCHER_CONFIGURATION_H_

View file

@ -16,7 +16,7 @@
#endif
#if PA_BUILDFLAG(USE_PARTITION_ALLOC)
#include "partition_alloc/partition_alloc_hooks.h"
#include "partition_alloc/partition_alloc_hooks.h" // nogncheck
#endif
namespace base::allocator::dispatcher {
@ -34,7 +34,7 @@ struct Dispatcher::Impl {
void Reset() {
#if DCHECK_IS_ON()
DCHECK([&]() {
DCHECK([&] {
auto const was_set = is_initialized_check_flag_.test_and_set();
is_initialized_check_flag_.clear();
return was_set;

View file

@ -5,11 +5,11 @@
#ifndef BASE_ALLOCATOR_DISPATCHER_DISPATCHER_H_
#define BASE_ALLOCATOR_DISPATCHER_DISPATCHER_H_
#include <memory>
#include "base/allocator/dispatcher/internal/dispatcher_internal.h"
#include "base/base_export.h"
#include <memory>
namespace base::allocator::dispatcher {
namespace internal {

View file

@ -5,13 +5,13 @@
#ifndef BASE_ALLOCATOR_DISPATCHER_INITIALIZER_H_
#define BASE_ALLOCATOR_DISPATCHER_INITIALIZER_H_
#include <tuple>
#include <utility>
#include "base/allocator/dispatcher/configuration.h"
#include "base/allocator/dispatcher/dispatcher.h"
#include "base/allocator/dispatcher/internal/tools.h"
#include <tuple>
#include <utility>
namespace base::allocator::dispatcher {
namespace internal {

View file

@ -10,11 +10,11 @@
#include "partition_alloc/buildflags.h"
#if PA_BUILDFLAG(USE_PARTITION_ALLOC)
#include "partition_alloc/partition_alloc_hooks.h"
#include "partition_alloc/partition_alloc_hooks.h" // nogncheck
#endif
#if PA_BUILDFLAG(USE_ALLOCATOR_SHIM)
#include "partition_alloc/shim/allocator_shim.h"
#include "partition_alloc/shim/allocator_shim.h" // nogncheck
#endif
namespace base::allocator::dispatcher::internal {

View file

@ -16,7 +16,7 @@
#include "partition_alloc/buildflags.h"
#if PA_BUILDFLAG(USE_PARTITION_ALLOC)
#include "partition_alloc/partition_alloc_allocation_data.h"
#include "partition_alloc/partition_alloc_allocation_data.h" // nogncheck
#endif
#if PA_BUILDFLAG(USE_ALLOCATOR_SHIM)

View file

@ -24,4 +24,4 @@ enum class AllocationSubsystem {
};
} // namespace base::allocator::dispatcher
#endif // BASE_ALLOCATOR_DISPATCHER_SUBSYSTEM_H_
#endif // BASE_ALLOCATOR_DISPATCHER_SUBSYSTEM_H_

View file

@ -24,4 +24,4 @@ struct DispatcherTest : public ::testing::Test {
} // namespace base::allocator::dispatcher::testing
#endif // BASE_ALLOCATOR_DISPATCHER_TESTING_DISPATCHER_TEST_H_
#endif // BASE_ALLOCATOR_DISPATCHER_TESTING_DISPATCHER_TEST_H_

View file

@ -30,4 +30,4 @@ struct ObserverMock {
} // namespace testing
} // namespace base::allocator::dispatcher
#endif // BASE_ALLOCATOR_DISPATCHER_TESTING_OBSERVER_MOCK_H_
#endif // BASE_ALLOCATOR_DISPATCHER_TESTING_OBSERVER_MOCK_H_

View file

@ -8,14 +8,14 @@
#if USE_LOCAL_TLS_EMULATION()
#include <sys/mman.h>
#include "base/check.h"
#include "base/dcheck_is_on.h"
#include "base/debug/crash_logging.h"
#include "base/immediate_crash.h"
#include "build/build_config.h"
#include <sys/mman.h>
#if BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_LINUX)
#include <sys/prctl.h>
#endif
@ -96,7 +96,7 @@ PThreadTLSSystem& PThreadTLSSystem::operator=(PThreadTLSSystem&& other) {
bool PThreadTLSSystem::Setup(
OnThreadTerminationFunction thread_termination_function,
const std::string_view instance_id) {
std::string_view instance_id) {
#if DCHECK_IS_ON()
// Initialize must happen outside of the allocation path. Therefore, it is
// secure to verify with DCHECK.

View file

@ -17,17 +17,21 @@
#endif
#if USE_LOCAL_TLS_EMULATION()
#include <pthread.h>
#include <algorithm>
#include <atomic>
#include <functional>
#include <memory>
#include <mutex>
#include "base/base_export.h"
#include "base/check.h"
#include "base/compiler_specific.h"
#include "partition_alloc/partition_alloc_constants.h"
#include <pthread.h>
#if PA_BUILDFLAG(USE_PARTITION_ALLOC)
#include "partition_alloc/partition_alloc_constants.h" // nogncheck
#endif
#if HAS_FEATURE(thread_sanitizer)
#define DISABLE_TSAN_INSTRUMENTATION __attribute__((no_sanitize("thread")))
@ -111,7 +115,7 @@ class BASE_EXPORT PThreadTLSSystem {
// @param thread_termination_function An optional function which will be
// invoked upon termination of a thread.
bool Setup(OnThreadTerminationFunction thread_termination_function,
const std::string_view instance_id);
std::string_view instance_id);
// Tear down the TLS system. After completing tear down, the thread
// termination function passed to Setup will not be invoked anymore.
bool TearDownForTesting();
@ -199,7 +203,7 @@ template <typename PayloadType,
size_t AllocationChunkSize,
bool IsDestructibleForTesting>
struct ThreadLocalStorage {
explicit ThreadLocalStorage(const std::string_view instance_id)
explicit ThreadLocalStorage(std::string_view instance_id)
: root_(AllocateAndInitializeChunk()) {
Initialize(instance_id);
}
@ -207,7 +211,7 @@ struct ThreadLocalStorage {
// Create a new instance of |ThreadLocalStorage| using the passed allocator
// and TLS system. This initializes the underlying TLS system and creates the
// first chunk of data.
ThreadLocalStorage(const std::string_view instance_id,
ThreadLocalStorage(std::string_view instance_id,
AllocatorType allocator,
TLSSystemType tls_system)
: allocator_(std::move(allocator)),
@ -360,7 +364,7 @@ struct ThreadLocalStorage {
}
// Perform common initialization during construction of an instance.
void Initialize(const std::string_view instance_id) {
void Initialize(std::string_view instance_id) {
// The constructor must be called outside of the allocation path. Therefore,
// it is secure to verify with CHECK.

View file

@ -166,7 +166,7 @@ Enum GetMiracleParameterAsEnum(
default_value, type, options) \
type function_name() { \
static const type value = miracle_parameter::GetMiracleParameterAsEnum( \
feature, param_name, default_value, base::make_span(options)); \
feature, param_name, default_value, base::span(options)); \
return value; \
}

View file

@ -20,8 +20,22 @@
#include "partition_alloc/shim/allocator_shim_dispatch_to_noop_on_free.h"
#include "partition_alloc/thread_cache.h"
namespace base {
namespace features {
namespace base::features {
namespace {
static constexpr char kPAFeatureEnabledProcessesStr[] = "enabled-processes";
static constexpr char kBrowserOnlyStr[] = "browser-only";
static constexpr char kBrowserAndRendererStr[] = "browser-and-renderer";
static constexpr char kNonRendererStr[] = "non-renderer";
static constexpr char kAllProcessesStr[] = "all-processes";
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
static constexpr char kRendererOnlyStr[] = "renderer-only";
static constexpr char kAllChildProcessesStr[] = "all-child-processes";
#endif // PA_CONFIG(ENABLE_SHADOW_METADATA)
} // namespace
BASE_FEATURE(kPartitionAllocUnretainedDanglingPtr,
"PartitionAllocUnretainedDanglingPtr",
@ -33,7 +47,8 @@ constexpr FeatureParam<UnretainedDanglingPtrMode>::Option
{UnretainedDanglingPtrMode::kDumpWithoutCrashing,
"dump_without_crashing"},
};
const base::FeatureParam<UnretainedDanglingPtrMode>
// Note: Do not use the prepared macro as of no need for a local cache.
constinit const FeatureParam<UnretainedDanglingPtrMode>
kUnretainedDanglingPtrModeParam = {
&kPartitionAllocUnretainedDanglingPtr,
"mode",
@ -41,6 +56,10 @@ const base::FeatureParam<UnretainedDanglingPtrMode>
&kUnretainedDanglingPtrModeOption,
};
// Note: DPD conflicts with no-op `free()` (see
// `base::allocator::MakeFreeNoOp()`). No-op `free()` stands down in the
// presence of DPD, but hypothetically fully launching DPD should prompt
// a rethink of no-op `free()`.
BASE_FEATURE(kPartitionAllocDanglingPtr,
"PartitionAllocDanglingPtr",
#if PA_BUILDFLAG(ENABLE_DANGLING_RAW_PTR_FEATURE_FLAG)
@ -54,7 +73,8 @@ constexpr FeatureParam<DanglingPtrMode>::Option kDanglingPtrModeOption[] = {
{DanglingPtrMode::kCrash, "crash"},
{DanglingPtrMode::kLogOnly, "log_only"},
};
const base::FeatureParam<DanglingPtrMode> kDanglingPtrModeParam{
// Note: Do not use the prepared macro as of no need for a local cache.
constinit const FeatureParam<DanglingPtrMode> kDanglingPtrModeParam{
&kPartitionAllocDanglingPtr,
"mode",
DanglingPtrMode::kCrash,
@ -64,7 +84,8 @@ constexpr FeatureParam<DanglingPtrType>::Option kDanglingPtrTypeOption[] = {
{DanglingPtrType::kAll, "all"},
{DanglingPtrType::kCrossTask, "cross_task"},
};
const base::FeatureParam<DanglingPtrType> kDanglingPtrTypeParam{
// Note: Do not use the prepared macro as of no need for a local cache.
constinit const FeatureParam<DanglingPtrType> kDanglingPtrTypeParam{
&kPartitionAllocDanglingPtr,
"type",
DanglingPtrType::kAll,
@ -90,7 +111,7 @@ MIRACLE_PARAMETER_FOR_INT(
BASE_FEATURE(kPartitionAllocLargeEmptySlotSpanRing,
"PartitionAllocLargeEmptySlotSpanRing",
#if BUILDFLAG(IS_MAC)
#if BUILDFLAG(IS_MAC) || BUILDFLAG(IS_WIN)
FEATURE_ENABLED_BY_DEFAULT);
#else
FEATURE_DISABLED_BY_DEFAULT);
@ -102,16 +123,17 @@ BASE_FEATURE(kPartitionAllocWithAdvancedChecks,
constexpr FeatureParam<PartitionAllocWithAdvancedChecksEnabledProcesses>::Option
kPartitionAllocWithAdvancedChecksEnabledProcessesOptions[] = {
{PartitionAllocWithAdvancedChecksEnabledProcesses::kBrowserOnly,
"browser-only"},
kBrowserOnlyStr},
{PartitionAllocWithAdvancedChecksEnabledProcesses::kBrowserAndRenderer,
"browser-and-renderer"},
kBrowserAndRendererStr},
{PartitionAllocWithAdvancedChecksEnabledProcesses::kNonRenderer,
"non-renderer"},
kNonRendererStr},
{PartitionAllocWithAdvancedChecksEnabledProcesses::kAllProcesses,
"all-processes"}};
const base::FeatureParam<PartitionAllocWithAdvancedChecksEnabledProcesses>
kAllProcessesStr}};
// Note: Do not use the prepared macro as of no need for a local cache.
constinit const FeatureParam<PartitionAllocWithAdvancedChecksEnabledProcesses>
kPartitionAllocWithAdvancedChecksEnabledProcessesParam{
&kPartitionAllocWithAdvancedChecks, "enabled-processes",
&kPartitionAllocWithAdvancedChecks, kPAFeatureEnabledProcessesStr,
PartitionAllocWithAdvancedChecksEnabledProcesses::kBrowserOnly,
&kPartitionAllocWithAdvancedChecksEnabledProcessesOptions};
@ -119,14 +141,29 @@ BASE_FEATURE(kPartitionAllocSchedulerLoopQuarantine,
"PartitionAllocSchedulerLoopQuarantine",
FEATURE_DISABLED_BY_DEFAULT);
// Scheduler Loop Quarantine's per-branch capacity in bytes.
const base::FeatureParam<int>
// Note: Do not use the prepared macro as of no need for a local cache.
constinit const FeatureParam<int>
kPartitionAllocSchedulerLoopQuarantineBranchCapacity{
&kPartitionAllocSchedulerLoopQuarantine,
"PartitionAllocSchedulerLoopQuarantineBranchCapacity", 0};
// Scheduler Loop Quarantine's capacity for the UI thread in bytes.
BASE_FEATURE_PARAM(int,
kPartitionAllocSchedulerLoopQuarantineBrowserUICapacity,
&kPartitionAllocSchedulerLoopQuarantine,
"PartitionAllocSchedulerLoopQuarantineBrowserUICapacity",
0);
BASE_FEATURE(kPartitionAllocZappingByFreeFlags,
"PartitionAllocZappingByFreeFlags",
FEATURE_DISABLED_BY_DEFAULT);
BASE_FEATURE(kPartitionAllocEventuallyZeroFreedMemory,
"PartitionAllocEventuallyZeroFreedMemory",
FEATURE_DISABLED_BY_DEFAULT);
BASE_FEATURE(kPartitionAllocFewerMemoryRegions,
"PartitionAllocFewerMemoryRegions",
FEATURE_DISABLED_BY_DEFAULT);
#endif // PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
BASE_FEATURE(kPartitionAllocBackupRefPtr,
@ -140,34 +177,41 @@ BASE_FEATURE(kPartitionAllocBackupRefPtr,
constexpr FeatureParam<BackupRefPtrEnabledProcesses>::Option
kBackupRefPtrEnabledProcessesOptions[] = {
{BackupRefPtrEnabledProcesses::kBrowserOnly, "browser-only"},
{BackupRefPtrEnabledProcesses::kBrowserOnly, kBrowserOnlyStr},
{BackupRefPtrEnabledProcesses::kBrowserAndRenderer,
"browser-and-renderer"},
{BackupRefPtrEnabledProcesses::kNonRenderer, "non-renderer"},
{BackupRefPtrEnabledProcesses::kAllProcesses, "all-processes"}};
kBrowserAndRendererStr},
{BackupRefPtrEnabledProcesses::kNonRenderer, kNonRendererStr},
{BackupRefPtrEnabledProcesses::kAllProcesses, kAllProcessesStr}};
const base::FeatureParam<BackupRefPtrEnabledProcesses>
kBackupRefPtrEnabledProcessesParam{
&kPartitionAllocBackupRefPtr, "enabled-processes",
BASE_FEATURE_ENUM_PARAM(BackupRefPtrEnabledProcesses,
kBackupRefPtrEnabledProcessesParam,
&kPartitionAllocBackupRefPtr,
kPAFeatureEnabledProcessesStr,
#if PA_BUILDFLAG(IS_MAC) && PA_BUILDFLAG(PA_ARCH_CPU_ARM64)
BackupRefPtrEnabledProcesses::kNonRenderer,
BackupRefPtrEnabledProcesses::kNonRenderer,
#else
BackupRefPtrEnabledProcesses::kAllProcesses,
BackupRefPtrEnabledProcesses::kAllProcesses,
#endif
&kBackupRefPtrEnabledProcessesOptions};
&kBackupRefPtrEnabledProcessesOptions);
constexpr FeatureParam<BackupRefPtrMode>::Option kBackupRefPtrModeOptions[] = {
{BackupRefPtrMode::kDisabled, "disabled"},
{BackupRefPtrMode::kEnabled, "enabled"},
};
const base::FeatureParam<BackupRefPtrMode> kBackupRefPtrModeParam{
&kPartitionAllocBackupRefPtr, "brp-mode", BackupRefPtrMode::kEnabled,
&kBackupRefPtrModeOptions};
BASE_FEATURE_ENUM_PARAM(BackupRefPtrMode,
kBackupRefPtrModeParam,
&kPartitionAllocBackupRefPtr,
"brp-mode",
BackupRefPtrMode::kEnabled,
&kBackupRefPtrModeOptions);
// Note: Do not use the prepared macro as of no need for a local cache.
constinit const FeatureParam<int> kBackupRefPtrExtraExtrasSizeParam{
&kPartitionAllocBackupRefPtr, "brp-extra-extras-size", 0};
BASE_FEATURE(kPartitionAllocMemoryTagging,
"PartitionAllocMemoryTagging",
#if PA_BUILDFLAG(USE_FULL_MTE)
#if PA_BUILDFLAG(USE_FULL_MTE) || BUILDFLAG(IS_ANDROID)
FEATURE_ENABLED_BY_DEFAULT
#else
FEATURE_DISABLED_BY_DEFAULT
@ -178,7 +222,8 @@ constexpr FeatureParam<MemtagMode>::Option kMemtagModeOptions[] = {
{MemtagMode::kSync, "sync"},
{MemtagMode::kAsync, "async"}};
const base::FeatureParam<MemtagMode> kMemtagModeParam{
// Note: Do not use the prepared macro as of no need for a local cache.
constinit const FeatureParam<MemtagMode> kMemtagModeParam{
&kPartitionAllocMemoryTagging, "memtag-mode",
#if PA_BUILDFLAG(USE_FULL_MTE)
MemtagMode::kSync,
@ -192,23 +237,25 @@ constexpr FeatureParam<RetagMode>::Option kRetagModeOptions[] = {
{RetagMode::kRandom, "random"},
};
const base::FeatureParam<RetagMode> kRetagModeParam{
// Note: Do not use the prepared macro as of no need for a local cache.
constinit const FeatureParam<RetagMode> kRetagModeParam{
&kPartitionAllocMemoryTagging, "retag-mode", RetagMode::kIncrement,
&kRetagModeOptions};
constexpr FeatureParam<MemoryTaggingEnabledProcesses>::Option
kMemoryTaggingEnabledProcessesOptions[] = {
{MemoryTaggingEnabledProcesses::kBrowserOnly, "browser-only"},
{MemoryTaggingEnabledProcesses::kNonRenderer, "non-renderer"},
{MemoryTaggingEnabledProcesses::kAllProcesses, "all-processes"}};
{MemoryTaggingEnabledProcesses::kBrowserOnly, kBrowserOnlyStr},
{MemoryTaggingEnabledProcesses::kNonRenderer, kNonRendererStr},
{MemoryTaggingEnabledProcesses::kAllProcesses, kAllProcessesStr}};
const base::FeatureParam<MemoryTaggingEnabledProcesses>
// Note: Do not use the prepared macro as of no need for a local cache.
constinit const FeatureParam<MemoryTaggingEnabledProcesses>
kMemoryTaggingEnabledProcessesParam{
&kPartitionAllocMemoryTagging, "enabled-processes",
&kPartitionAllocMemoryTagging, kPAFeatureEnabledProcessesStr,
#if PA_BUILDFLAG(USE_FULL_MTE)
MemoryTaggingEnabledProcesses::kAllProcesses,
#else
MemoryTaggingEnabledProcesses::kBrowserOnly,
MemoryTaggingEnabledProcesses::kNonRenderer,
#endif
&kMemoryTaggingEnabledProcessesOptions};
@ -227,13 +274,16 @@ BASE_FEATURE(kPartitionAllocPermissiveMte,
#endif
);
const base::FeatureParam<bool> kBackupRefPtrAsanEnableDereferenceCheckParam{
// Note: Do not use the prepared macro to implement following FeatureParams
// as of no need for a local cache.
constinit const FeatureParam<bool> kBackupRefPtrAsanEnableDereferenceCheckParam{
&kPartitionAllocBackupRefPtr, "asan-enable-dereference-check", true};
const base::FeatureParam<bool> kBackupRefPtrAsanEnableExtractionCheckParam{
constinit const FeatureParam<bool> kBackupRefPtrAsanEnableExtractionCheckParam{
&kPartitionAllocBackupRefPtr, "asan-enable-extraction-check",
false}; // Not much noise at the moment to enable by default.
const base::FeatureParam<bool> kBackupRefPtrAsanEnableInstantiationCheckParam{
&kPartitionAllocBackupRefPtr, "asan-enable-instantiation-check", true};
constinit const FeatureParam<bool>
kBackupRefPtrAsanEnableInstantiationCheckParam{
&kPartitionAllocBackupRefPtr, "asan-enable-instantiation-check", true};
// If enabled, switches the bucket distribution to a denser one.
//
@ -247,29 +297,31 @@ BASE_FEATURE(kPartitionAllocUseDenserDistribution,
FEATURE_ENABLED_BY_DEFAULT
#endif // BUILDFLAG(IS_ANDROID) && defined(ARCH_CPU_32_BITS)
);
const base::FeatureParam<BucketDistributionMode>::Option
const FeatureParam<BucketDistributionMode>::Option
kPartitionAllocBucketDistributionOption[] = {
{BucketDistributionMode::kDefault, "default"},
{BucketDistributionMode::kDenser, "denser"},
};
const base::FeatureParam<BucketDistributionMode>
kPartitionAllocBucketDistributionParam {
&kPartitionAllocUseDenserDistribution, "mode",
// Note: Do not use the prepared macro as of no need for a local cache.
constinit const FeatureParam<BucketDistributionMode>
kPartitionAllocBucketDistributionParam{
&kPartitionAllocUseDenserDistribution, "mode",
#if BUILDFLAG(IS_ANDROID) && defined(ARCH_CPU_32_BITS)
BucketDistributionMode::kDefault,
BucketDistributionMode::kDefault,
#else
BucketDistributionMode::kDenser,
BucketDistributionMode::kDenser,
#endif // BUILDFLAG(IS_ANDROID) && defined(ARCH_CPU_32_BITS)
&kPartitionAllocBucketDistributionOption
};
&kPartitionAllocBucketDistributionOption};
BASE_FEATURE(kPartitionAllocMemoryReclaimer,
"PartitionAllocMemoryReclaimer",
FEATURE_ENABLED_BY_DEFAULT);
const base::FeatureParam<TimeDelta> kPartitionAllocMemoryReclaimerInterval = {
&kPartitionAllocMemoryReclaimer, "interval",
TimeDelta(), // Defaults to zero.
};
BASE_FEATURE_PARAM(TimeDelta,
kPartitionAllocMemoryReclaimerInterval,
&kPartitionAllocMemoryReclaimer,
"interval",
TimeDelta() // Defaults to zero.
);
// Configures whether we set a lower limit for renderers that do not have a main
// frame, similar to the limit that is already done for backgrounded renderers.
@ -282,16 +334,17 @@ BASE_FEATURE(kLowerPAMemoryLimitForNonMainRenderers,
BASE_FEATURE(kPartitionAllocStraightenLargerSlotSpanFreeLists,
"PartitionAllocStraightenLargerSlotSpanFreeLists",
FEATURE_ENABLED_BY_DEFAULT);
const base::FeatureParam<
partition_alloc::StraightenLargerSlotSpanFreeListsMode>::Option
kPartitionAllocStraightenLargerSlotSpanFreeListsModeOption[] = {
const FeatureParam<partition_alloc::StraightenLargerSlotSpanFreeListsMode>::
Option kPartitionAllocStraightenLargerSlotSpanFreeListsModeOption[] = {
{partition_alloc::StraightenLargerSlotSpanFreeListsMode::
kOnlyWhenUnprovisioning,
"only-when-unprovisioning"},
{partition_alloc::StraightenLargerSlotSpanFreeListsMode::kAlways,
"always"},
};
const base::FeatureParam<partition_alloc::StraightenLargerSlotSpanFreeListsMode>
// Note: Do not use the prepared macro as of no need for a local cache.
constinit const FeatureParam<
partition_alloc::StraightenLargerSlotSpanFreeListsMode>
kPartitionAllocStraightenLargerSlotSpanFreeListsMode = {
&kPartitionAllocStraightenLargerSlotSpanFreeLists,
"mode",
@ -324,9 +377,11 @@ BASE_FEATURE(kPageAllocatorRetryOnCommitFailure,
// The feature: kPartialLowEndModeOnMidRangeDevices is defined in
// //base/features.cc. Since the following feature param is related to
// PartitionAlloc, define the param here.
const FeatureParam<bool> kPartialLowEndModeExcludePartitionAllocSupport{
&kPartialLowEndModeOnMidRangeDevices, "exclude-partition-alloc-support",
false};
BASE_FEATURE_PARAM(bool,
kPartialLowEndModeExcludePartitionAllocSupport,
&kPartialLowEndModeOnMidRangeDevices,
"exclude-partition-alloc-support",
false);
#endif
BASE_FEATURE(kEnableConfigurableThreadCacheMultiplier,
@ -344,19 +399,19 @@ MIRACLE_PARAMETER_FOR_DOUBLE(GetThreadCacheMultiplierForAndroid,
1.)
constexpr partition_alloc::internal::base::TimeDelta ToPartitionAllocTimeDelta(
base::TimeDelta time_delta) {
TimeDelta time_delta) {
return partition_alloc::internal::base::Microseconds(
time_delta.InMicroseconds());
}
constexpr base::TimeDelta FromPartitionAllocTimeDelta(
constexpr TimeDelta FromPartitionAllocTimeDelta(
partition_alloc::internal::base::TimeDelta time_delta) {
return base::Microseconds(time_delta.InMicroseconds());
return Microseconds(time_delta.InMicroseconds());
}
BASE_FEATURE(kEnableConfigurableThreadCachePurgeInterval,
"EnableConfigurableThreadCachePurgeInterval",
base::FEATURE_DISABLED_BY_DEFAULT);
FEATURE_DISABLED_BY_DEFAULT);
MIRACLE_PARAMETER_FOR_TIME_DELTA(
GetThreadCacheMinPurgeIntervalValue,
@ -393,7 +448,7 @@ GetThreadCacheDefaultPurgeInterval() {
BASE_FEATURE(kEnableConfigurableThreadCacheMinCachedMemoryForPurging,
"EnableConfigurableThreadCacheMinCachedMemoryForPurging",
base::FEATURE_DISABLED_BY_DEFAULT);
FEATURE_DISABLED_BY_DEFAULT);
MIRACLE_PARAMETER_FOR_INT(
GetThreadCacheMinCachedMemoryForPurgingBytes,
@ -416,66 +471,12 @@ BASE_FEATURE(kPartitionAllocDisableBRPInBufferPartition,
#if PA_BUILDFLAG(USE_FREELIST_DISPATCHER)
BASE_FEATURE(kUsePoolOffsetFreelists,
"PartitionAllocUsePoolOffsetFreelists",
base::FEATURE_DISABLED_BY_DEFAULT);
FEATURE_ENABLED_BY_DEFAULT);
#endif
BASE_FEATURE(kPartitionAllocMakeFreeNoOpOnShutdown,
"PartitionAllocMakeFreeNoOpOnShutdown",
#if PA_BUILDFLAG(IS_CHROMEOS)
FEATURE_ENABLED_BY_DEFAULT
#else
FEATURE_DISABLED_BY_DEFAULT
#endif
);
constexpr FeatureParam<WhenFreeBecomesNoOp>::Option
kPartitionAllocMakeFreeNoOpOnShutdownOptions[] = {
{WhenFreeBecomesNoOp::kBeforePreShutdown, "before-preshutdown"},
{WhenFreeBecomesNoOp::kBeforeHaltingStartupTracingController,
"before-halting-startup-tracing-controller"},
{
WhenFreeBecomesNoOp::kBeforeShutDownThreads,
"before-shutdown-threads",
},
{
WhenFreeBecomesNoOp::kInShutDownThreads,
"in-shutdown-threads",
},
{
WhenFreeBecomesNoOp::kAfterShutDownThreads,
"after-shutdown-threads",
},
};
const base::FeatureParam<WhenFreeBecomesNoOp>
kPartitionAllocMakeFreeNoOpOnShutdownParam{
&kPartitionAllocMakeFreeNoOpOnShutdown, "callsite",
WhenFreeBecomesNoOp::kBeforePreShutdown,
&kPartitionAllocMakeFreeNoOpOnShutdownOptions};
void MakeFreeNoOp(WhenFreeBecomesNoOp callsite) {
CHECK(base::FeatureList::GetInstance());
// Ignoring `free()` during Shutdown would allow developers to introduce new
// dangling pointers. So we want to avoid ignoring free when it is enabled.
// Note: For now, the DanglingPointerDetector is only enabled on 5 bots, and
// on linux non-official configuration.
// TODO(b/40802063): Reconsider this decision after the experiment.
#if PA_BUILDFLAG(ENABLE_DANGLING_RAW_PTR_CHECKS)
if (base::FeatureList::IsEnabled(features::kPartitionAllocDanglingPtr)) {
return;
}
#endif // PA_BUILDFLAG(ENABLE_DANGLING_RAW_PTR_CHECKS)
#if PA_BUILDFLAG(USE_ALLOCATOR_SHIM)
if (base::FeatureList::IsEnabled(kPartitionAllocMakeFreeNoOpOnShutdown) &&
kPartitionAllocMakeFreeNoOpOnShutdownParam.Get() == callsite) {
allocator_shim::InsertNoOpOnFreeAllocatorShimOnShutDown();
}
#endif // PA_BUILDFLAG(USE_ALLOCATOR_SHIM)
}
BASE_FEATURE(kPartitionAllocAdjustSizeWhenInForeground,
"PartitionAllocAdjustSizeWhenInForeground",
#if BUILDFLAG(IS_MAC)
#if BUILDFLAG(IS_MAC) || BUILDFLAG(IS_WIN)
FEATURE_ENABLED_BY_DEFAULT);
#else
FEATURE_DISABLED_BY_DEFAULT);
@ -483,7 +484,25 @@ BASE_FEATURE(kPartitionAllocAdjustSizeWhenInForeground,
BASE_FEATURE(kPartitionAllocUseSmallSingleSlotSpans,
"PartitionAllocUseSmallSingleSlotSpans",
base::FEATURE_DISABLED_BY_DEFAULT);
FEATURE_ENABLED_BY_DEFAULT);
} // namespace features
} // namespace base
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
BASE_FEATURE(kPartitionAllocShadowMetadata,
"PartitionAllocShadowMetadata",
FEATURE_DISABLED_BY_DEFAULT);
constexpr FeatureParam<ShadowMetadataEnabledProcesses>::Option
kShadowMetadataEnabledProcessesOptions[] = {
{ShadowMetadataEnabledProcesses::kRendererOnly, kRendererOnlyStr},
{ShadowMetadataEnabledProcesses::kAllChildProcesses,
kAllChildProcessesStr}};
// Note: Do not use the prepared macro as of no need for a local cache.
constinit const FeatureParam<ShadowMetadataEnabledProcesses>
kShadowMetadataEnabledProcessesParam{
&kPartitionAllocShadowMetadata, kPAFeatureEnabledProcessesStr,
ShadowMetadataEnabledProcesses::kRendererOnly,
&kShadowMetadataEnabledProcessesOptions};
#endif // PA_CONFIG(ENABLE_SHADOW_METADATA)
} // namespace base::features

View file

@ -15,16 +15,34 @@
#include "partition_alloc/partition_alloc_base/time/time.h"
#include "partition_alloc/partition_root.h"
namespace base {
namespace features {
namespace base::features {
extern const BASE_EXPORT Feature kPartitionAllocUnretainedDanglingPtr;
namespace internal {
enum class PAFeatureEnabledProcesses {
// Enabled only in the browser process.
kBrowserOnly,
// Enabled only in the browser and renderer processes.
kBrowserAndRenderer,
// Enabled in all processes, except renderer.
kNonRenderer,
// Enabled only in renderer processes.
kRendererOnly,
// Enabled in all child processes, except zygote.
kAllChildProcesses,
// Enabled in all processes.
kAllProcesses,
};
} // namespace internal
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocUnretainedDanglingPtr);
enum class UnretainedDanglingPtrMode {
kCrash,
kDumpWithoutCrashing,
};
extern const BASE_EXPORT base::FeatureParam<UnretainedDanglingPtrMode>
kUnretainedDanglingPtrModeParam;
BASE_EXPORT BASE_DECLARE_FEATURE_PARAM(UnretainedDanglingPtrMode,
kUnretainedDanglingPtrModeParam);
// See /docs/dangling_ptr.md
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocDanglingPtr);
@ -43,8 +61,7 @@ enum class DanglingPtrMode {
// Note: This will be extended with a single shot DumpWithoutCrashing.
};
extern const BASE_EXPORT base::FeatureParam<DanglingPtrMode>
kDanglingPtrModeParam;
BASE_EXPORT BASE_DECLARE_FEATURE_PARAM(DanglingPtrMode, kDanglingPtrModeParam);
enum class DanglingPtrType {
// Act on any dangling raw_ptr released after being freed.
kAll, // (default)
@ -55,19 +72,10 @@ enum class DanglingPtrType {
// Note: This will be extended with LongLived
};
extern const BASE_EXPORT base::FeatureParam<DanglingPtrType>
kDanglingPtrTypeParam;
BASE_EXPORT BASE_DECLARE_FEATURE_PARAM(DanglingPtrType, kDanglingPtrTypeParam);
enum class PartitionAllocWithAdvancedChecksEnabledProcesses {
// Enabled only in the browser process.
kBrowserOnly,
// Enabled only in the browser and renderer processes.
kBrowserAndRenderer,
// Enabled in all processes, except renderer.
kNonRenderer,
// Enabled in all processes.
kAllProcesses,
};
using PartitionAllocWithAdvancedChecksEnabledProcesses =
internal::PAFeatureEnabledProcesses;
#if PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocLargeThreadCacheSize);
@ -77,27 +85,34 @@ BASE_EXPORT int GetPartitionAllocLargeThreadCacheSizeValueForLowRAMAndroid();
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocLargeEmptySlotSpanRing);
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocWithAdvancedChecks);
extern const BASE_EXPORT
base::FeatureParam<PartitionAllocWithAdvancedChecksEnabledProcesses>
kPartitionAllocWithAdvancedChecksEnabledProcessesParam;
BASE_EXPORT BASE_DECLARE_FEATURE_PARAM(
PartitionAllocWithAdvancedChecksEnabledProcesses,
kPartitionAllocWithAdvancedChecksEnabledProcessesParam);
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocSchedulerLoopQuarantine);
// Scheduler Loop Quarantine's per-thread capacity in bytes.
extern const BASE_EXPORT base::FeatureParam<int>
kPartitionAllocSchedulerLoopQuarantineBranchCapacity;
BASE_EXPORT BASE_DECLARE_FEATURE_PARAM(
int,
kPartitionAllocSchedulerLoopQuarantineBranchCapacity);
// Scheduler Loop Quarantine's capacity for the UI thread in bytes.
// TODO(https://crbug.com/387470567): Support more thread types.
BASE_EXPORT BASE_DECLARE_FEATURE_PARAM(
int,
kPartitionAllocSchedulerLoopQuarantineBrowserUICapacity);
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocZappingByFreeFlags);
// Eventually zero out most PartitionAlloc memory. This is not meant as a
// security guarantee, but to increase the compression ratio of PartitionAlloc's
// fragmented super pages.
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocEventuallyZeroFreedMemory);
// Whether to make PartitionAlloc use fewer memory regions. This matters on
// Linux-based systems, where there is a per-process limit that we hit in some
// cases. See the comment in PartitionBucket::SlotSpanCOmmitedSize() for detail.
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocFewerMemoryRegions);
#endif // PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
enum class BackupRefPtrEnabledProcesses {
// BRP enabled only in the browser process.
kBrowserOnly,
// BRP enabled only in the browser and renderer processes.
kBrowserAndRenderer,
// BRP enabled in all processes, except renderer.
kNonRenderer,
// BRP enabled in all processes.
kAllProcesses,
};
using BackupRefPtrEnabledProcesses = internal::PAFeatureEnabledProcesses;
enum class BackupRefPtrMode {
// BRP is disabled across all partitions. Equivalent to the Finch flag being
@ -124,72 +139,52 @@ enum class RetagMode {
kRandom,
};
enum class MemoryTaggingEnabledProcesses {
// Memory tagging enabled only in the browser process.
kBrowserOnly,
// Memory tagging enabled in all processes, except renderer.
kNonRenderer,
// Memory tagging enabled in all processes.
kAllProcesses,
};
using MemoryTaggingEnabledProcesses = internal::PAFeatureEnabledProcesses;
enum class BucketDistributionMode : uint8_t {
kDefault,
kDenser,
};
// Parameter for 'kPartitionAllocMakeFreeNoOpOnShutdown' feature which
// controls when free() becomes a no-op during Shutdown()
enum class WhenFreeBecomesNoOp {
kBeforePreShutdown,
kBeforeHaltingStartupTracingController,
kBeforeShutDownThreads,
kInShutDownThreads,
kAfterShutDownThreads,
};
// Inserts a no-op on 'free()' allocator shim at the front of the
// dispatch chain if called from the appropriate callsite.
BASE_EXPORT void MakeFreeNoOp(WhenFreeBecomesNoOp callsite);
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocMakeFreeNoOpOnShutdown);
extern const BASE_EXPORT base::FeatureParam<WhenFreeBecomesNoOp>
kPartitionAllocMakeFreeNoOpOnShutdownParam;
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocBackupRefPtr);
extern const BASE_EXPORT base::FeatureParam<BackupRefPtrEnabledProcesses>
kBackupRefPtrEnabledProcessesParam;
extern const BASE_EXPORT base::FeatureParam<BackupRefPtrMode>
kBackupRefPtrModeParam;
BASE_EXPORT BASE_DECLARE_FEATURE_PARAM(BackupRefPtrEnabledProcesses,
kBackupRefPtrEnabledProcessesParam);
BASE_EXPORT BASE_DECLARE_FEATURE_PARAM(BackupRefPtrMode,
kBackupRefPtrModeParam);
BASE_EXPORT BASE_DECLARE_FEATURE_PARAM(int,
kBackupRefPtrExtraExtrasSizeParam);
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocMemoryTagging);
extern const BASE_EXPORT base::FeatureParam<MemtagMode> kMemtagModeParam;
extern const BASE_EXPORT base::FeatureParam<RetagMode> kRetagModeParam;
extern const BASE_EXPORT base::FeatureParam<MemoryTaggingEnabledProcesses>
kMemoryTaggingEnabledProcessesParam;
BASE_EXPORT BASE_DECLARE_FEATURE_PARAM(MemtagMode, kMemtagModeParam);
BASE_EXPORT BASE_DECLARE_FEATURE_PARAM(RetagMode, kRetagModeParam);
BASE_EXPORT BASE_DECLARE_FEATURE_PARAM(MemoryTaggingEnabledProcesses,
kMemoryTaggingEnabledProcessesParam);
// Kill switch for memory tagging. Skips any code related to memory tagging when
// enabled.
BASE_EXPORT BASE_DECLARE_FEATURE(kKillPartitionAllocMemoryTagging);
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocPermissiveMte);
extern const BASE_EXPORT base::FeatureParam<bool>
kBackupRefPtrAsanEnableDereferenceCheckParam;
extern const BASE_EXPORT base::FeatureParam<bool>
kBackupRefPtrAsanEnableExtractionCheckParam;
extern const BASE_EXPORT base::FeatureParam<bool>
kBackupRefPtrAsanEnableInstantiationCheckParam;
extern const BASE_EXPORT base::FeatureParam<BucketDistributionMode>
kPartitionAllocBucketDistributionParam;
BASE_EXPORT BASE_DECLARE_FEATURE_PARAM(
bool,
kBackupRefPtrAsanEnableDereferenceCheckParam);
BASE_EXPORT BASE_DECLARE_FEATURE_PARAM(
bool,
kBackupRefPtrAsanEnableExtractionCheckParam);
BASE_EXPORT BASE_DECLARE_FEATURE_PARAM(
bool,
kBackupRefPtrAsanEnableInstantiationCheckParam);
BASE_EXPORT BASE_DECLARE_FEATURE_PARAM(BucketDistributionMode,
kPartitionAllocBucketDistributionParam);
BASE_EXPORT BASE_DECLARE_FEATURE(kLowerPAMemoryLimitForNonMainRenderers);
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocUseDenserDistribution);
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocMemoryReclaimer);
extern const BASE_EXPORT base::FeatureParam<TimeDelta>
kPartitionAllocMemoryReclaimerInterval;
BASE_EXPORT BASE_DECLARE_FEATURE_PARAM(TimeDelta,
kPartitionAllocMemoryReclaimerInterval);
BASE_EXPORT BASE_DECLARE_FEATURE(
kPartitionAllocStraightenLargerSlotSpanFreeLists);
extern const BASE_EXPORT
base::FeatureParam<partition_alloc::StraightenLargerSlotSpanFreeListsMode>
kPartitionAllocStraightenLargerSlotSpanFreeListsMode;
BASE_EXPORT BASE_DECLARE_FEATURE_PARAM(
partition_alloc::StraightenLargerSlotSpanFreeListsMode,
kPartitionAllocStraightenLargerSlotSpanFreeListsMode);
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocSortSmallerSlotSpanFreeLists);
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocSortActiveSlotSpans);
@ -198,8 +193,9 @@ BASE_EXPORT BASE_DECLARE_FEATURE(kPageAllocatorRetryOnCommitFailure);
#endif
#if BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_CHROMEOS)
extern const base::FeatureParam<bool>
kPartialLowEndModeExcludePartitionAllocSupport;
BASE_EXPORT BASE_DECLARE_FEATURE_PARAM(
bool,
kPartialLowEndModeExcludePartitionAllocSupport);
#endif
BASE_EXPORT BASE_DECLARE_FEATURE(kEnableConfigurableThreadCacheMultiplier);
@ -237,7 +233,14 @@ BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocAdjustSizeWhenInForeground);
// See also: https://crbug.com/333443437
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocUseSmallSingleSlotSpans);
} // namespace features
} // namespace base
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
using ShadowMetadataEnabledProcesses = internal::PAFeatureEnabledProcesses;
BASE_EXPORT BASE_DECLARE_FEATURE(kPartitionAllocShadowMetadata);
BASE_EXPORT BASE_DECLARE_FEATURE_PARAM(ShadowMetadataEnabledProcesses,
kShadowMetadataEnabledProcessesParam);
#endif // PA_CONFIG(ENABLE_SHADOW_METADATA)
} // namespace base::features
#endif // BASE_ALLOCATOR_PARTITION_ALLOC_FEATURES_H_

View file

@ -4,6 +4,7 @@
#include "base/allocator/partition_alloc_support.h"
#include <algorithm>
#include <array>
#include <cinttypes>
#include <cstdint>
@ -31,7 +32,6 @@
#include "base/metrics/histogram_macros.h"
#include "base/no_destructor.h"
#include "base/pending_task.h"
#include "base/ranges/algorithm.h"
#include "base/strings/string_split.h"
#include "base/strings/stringprintf.h"
#include "base/system/sys_info.h"
@ -48,6 +48,7 @@
#include "partition_alloc/memory_reclaimer.h"
#include "partition_alloc/page_allocator.h"
#include "partition_alloc/partition_alloc_base/debug/alias.h"
#include "partition_alloc/partition_alloc_base/immediate_crash.h"
#include "partition_alloc/partition_alloc_base/threading/platform_thread.h"
#include "partition_alloc/partition_alloc_check.h"
#include "partition_alloc/partition_alloc_config.h"
@ -58,6 +59,7 @@
#include "partition_alloc/pointers/raw_ptr.h"
#include "partition_alloc/shim/allocator_shim.h"
#include "partition_alloc/shim/allocator_shim_default_dispatch_to_partition_alloc.h"
#include "partition_alloc/shim/allocator_shim_dispatch_to_noop_on_free.h"
#include "partition_alloc/stack/stack.h"
#include "partition_alloc/thread_cache.h"
@ -337,6 +339,40 @@ std::map<std::string, std::string> ProposeSyntheticFinchTrials() {
return trials;
}
namespace {
bool ShouldEnableFeatureOnProcess(
features::internal::PAFeatureEnabledProcesses enabled_processes,
const std::string& process_type) {
switch (enabled_processes) {
case features::internal::PAFeatureEnabledProcesses::kBrowserOnly:
return process_type.empty();
case features::internal::PAFeatureEnabledProcesses::kNonRenderer:
return process_type != switches::kRendererProcess;
case features::internal::PAFeatureEnabledProcesses::kBrowserAndRenderer:
return process_type.empty() || process_type == switches::kRendererProcess;
case features::internal::PAFeatureEnabledProcesses::kRendererOnly:
return process_type == switches::kRendererProcess;
case features::internal::PAFeatureEnabledProcesses::kAllChildProcesses:
return !process_type.empty() && process_type != switches::kZygoteProcess;
case features::internal::PAFeatureEnabledProcesses::kAllProcesses:
return true;
}
}
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
bool ShouldEnableShadowMetadata(const std::string& process_type) {
if (!base::FeatureList::IsEnabled(
base::features::kPartitionAllocShadowMetadata)) {
return false;
}
return ShouldEnableFeatureOnProcess(
features::kShadowMetadataEnabledProcessesParam.Get(), process_type);
}
#endif // PA_CONFIG(ENABLE_SHADOW_METADATA)
} // namespace
#if PA_BUILDFLAG(ENABLE_DANGLING_RAW_PTR_CHECKS)
namespace {
@ -429,7 +465,7 @@ std::string ExtractDanglingPtrSignature(std::string stacktrace) {
size_t caller_index = 0;
for (size_t i = 0; i < lines.size(); ++i) {
for (const auto& patterns : callee_patterns) {
if (ranges::all_of(patterns, [&](std::string_view pattern) {
if (std::ranges::all_of(patterns, [&](std::string_view pattern) {
return lines[i].find(pattern) != std::string_view::npos;
})) {
caller_index = i + 1;
@ -552,38 +588,55 @@ void DanglingRawPtrReleased(uintptr_t id) {
std::string dangling_signature = ExtractDanglingPtrSignature(
free_info, stack_trace_release, task_trace_release);
static const char dangling_ptr_footer[] =
"\n"
"\n"
"Please check for more information on:\n"
"https://chromium.googlesource.com/chromium/src/+/main/docs/"
"dangling_ptr_guide.md\n"
"\n"
"Googlers: Please give us your feedback about the dangling pointer\n"
" detector at:\n"
" http://go/dangling-ptr-cq-survey\n";
if (free_info) {
LOG(ERROR) << "Detected dangling raw_ptr with id="
<< StringPrintf("0x%016" PRIxPTR, id) << ":\n"
<< dangling_signature << "\n\n"
<< "The memory was freed at:\n"
<< free_info->stack_trace << "\n"
<< free_info->task_trace << "\n"
<< "The dangling raw_ptr was released at:\n"
<< stack_trace_release << "\n"
<< task_trace_release << dangling_ptr_footer;
} else {
LOG(ERROR) << "Detected dangling raw_ptr with id="
<< StringPrintf("0x%016" PRIxPTR, id) << ":\n\n"
<< dangling_signature << "\n\n"
<< "It was not recorded where the memory was freed.\n\n"
<< "The dangling raw_ptr was released at:\n"
<< stack_trace_release << "\n"
<< task_trace_release << dangling_ptr_footer;
{
// Log the full error in a single LogMessage. Printing StackTrace is
// expensive, so we want to avoid interleaving the output with other logs.
logging::LogMessage log_message(__FILE__, __LINE__, logging::LOGGING_ERROR);
std::ostream& error = log_message.stream();
// The dangling signature can be used by script to locate the origin of
// every dangling pointers.
error << "\n\n"
<< ExtractDanglingPtrSignature(free_info, stack_trace_release,
task_trace_release)
<< "\n\n";
error << "[DanglingPtr](1/3) A raw_ptr/raw_ref is dangling.\n\n";
auto print_traces = [](debug::StackTrace stack_trace,
debug::TaskTrace task_trace, std::ostream& error) {
error << "Stack trace:\n";
error << stack_trace << "\n";
// Printing "Task trace:" is implied by the TaskTrace itself.
if (!task_trace.empty()) {
error << task_trace << "\n";
}
};
error << "[DanglingPtr](2/3) ";
if (free_info) {
error << "First, the memory was freed at:\n\n";
print_traces(free_info->stack_trace, free_info->task_trace, error);
} else {
error << "It was not recorded where the memory was freed.\n";
}
error << "[DanglingPtr](3/3) Later, the dangling raw_ptr was released "
"at:\n\n";
print_traces(stack_trace_release, task_trace_release, error);
error << "Please check for more information on:\n";
error << "https://chromium.googlesource.com/chromium/src/+/main/docs/";
error << "dangling_ptr_guide.md\n";
error << "\n";
}
if constexpr (dangling_pointer_mode == features::DanglingPtrMode::kCrash) {
ImmediateCrash();
// We use `PA_IMMEDIATE_CRASH()` instead of base's ImmediateCrash() to avoid
// printing the raw_ptr release stack trace twice.
PA_IMMEDIATE_CRASH();
}
}
@ -614,16 +667,16 @@ void CheckDanglingRawPtrBufferEmpty() {
std::vector<std::array<const void*, 32>> stack_traces =
internal::InstanceTracer::GetStackTracesForDanglingRefs(entry->id);
for (const auto& raw_stack_trace : stack_traces) {
CHECK(ranges::is_partitioned(raw_stack_trace, is_frame_ptr_not_null))
CHECK(std::ranges::is_partitioned(raw_stack_trace, is_frame_ptr_not_null))
<< "`raw_stack_trace` is expected to be partitioned: non-null values "
"at the begining followed by `nullptr`s.";
LOG(ERROR) << "Dangling reference from:\n";
LOG(ERROR) << debug::StackTrace(
// This call truncates the `nullptr` tail of the stack
// trace (see the `is_partitioned` CHECK above).
make_span(raw_stack_trace.begin(),
ranges::partition_point(
raw_stack_trace, is_frame_ptr_not_null)))
span(raw_stack_trace.begin(),
std::ranges::partition_point(
raw_stack_trace, is_frame_ptr_not_null)))
<< "\n";
}
#else
@ -748,6 +801,22 @@ void ReconfigurePartitionForKnownProcess(const std::string& process_type) {
// experiments.
}
void MakeFreeNoOp() {
// Ignoring `free()` during Shutdown would allow developers to introduce new
// dangling pointers. So we want to avoid ignoring free when it is enabled.
// Note: For now, the DanglingPointerDetector is only enabled on 5 bots, and
// on linux non-official configuration.
#if PA_BUILDFLAG(ENABLE_DANGLING_RAW_PTR_CHECKS)
CHECK(base::FeatureList::GetInstance());
if (base::FeatureList::IsEnabled(features::kPartitionAllocDanglingPtr)) {
return;
}
#endif // PA_BUILDFLAG(ENABLE_DANGLING_RAW_PTR_CHECKS)
#if PA_BUILDFLAG(USE_ALLOCATOR_SHIM)
allocator_shim::InsertNoOpOnFreeAllocatorShimOnShutDown();
#endif // PA_BUILDFLAG(USE_ALLOCATOR_SHIM)
}
PartitionAllocSupport* PartitionAllocSupport::Get() {
static auto* singleton = new PartitionAllocSupport();
return singleton;
@ -779,14 +848,8 @@ bool PartitionAllocSupport::ShouldEnableMemoryTagging(
base::features::kKillPartitionAllocMemoryTagging)) {
return false;
}
switch (base::features::kMemoryTaggingEnabledProcessesParam.Get()) {
case base::features::MemoryTaggingEnabledProcesses::kBrowserOnly:
return process_type.empty();
case base::features::MemoryTaggingEnabledProcesses::kNonRenderer:
return process_type != switches::kRendererProcess;
case base::features::MemoryTaggingEnabledProcesses::kAllProcesses:
return true;
}
return ShouldEnableFeatureOnProcess(
base::features::kMemoryTaggingEnabledProcessesParam.Get(), process_type);
}
// static
@ -804,85 +867,41 @@ bool PartitionAllocSupport::ShouldEnablePartitionAllocWithAdvancedChecks(
base::features::kPartitionAllocWithAdvancedChecks)) {
return false;
}
switch (base::features::kPartitionAllocWithAdvancedChecksEnabledProcessesParam
.Get()) {
case base::features::PartitionAllocWithAdvancedChecksEnabledProcesses::
kBrowserOnly:
return process_type.empty();
case base::features::PartitionAllocWithAdvancedChecksEnabledProcesses::
kBrowserAndRenderer:
return process_type.empty() || process_type == switches::kRendererProcess;
case base::features::PartitionAllocWithAdvancedChecksEnabledProcesses::
kNonRenderer:
return process_type != switches::kRendererProcess;
case base::features::PartitionAllocWithAdvancedChecksEnabledProcesses::
kAllProcesses:
return true;
}
return ShouldEnableFeatureOnProcess(
base::features::kPartitionAllocWithAdvancedChecksEnabledProcessesParam
.Get(),
process_type);
#endif // !PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
}
#if PA_BUILDFLAG( \
ENABLE_ALLOCATOR_SHIM_PARTITION_ALLOC_DISPATCH_WITH_ADVANCED_CHECKS_SUPPORT)
allocator_shim::AllocatorDispatch g_dispatch_for_advanced_checks = {
.realloc_function =
&allocator_shim::internal::PartitionReallocWithAdvancedChecks,
.free_function = &allocator_shim::internal::PartitionFreeWithAdvancedChecks,
.next = nullptr,
};
#endif // PA_BUILDFLAG(
// ENABLE_ALLOCATOR_SHIM_PARTITION_ALLOC_DISPATCH_WITH_ADVANCED_CHECKS_SUPPORT)
// static
PartitionAllocSupport::BrpConfiguration
PartitionAllocSupport::GetBrpConfiguration(const std::string& process_type) {
// TODO(bartekn): Switch to DCHECK once confirmed there are no issues.
CHECK(base::FeatureList::GetInstance());
bool process_affected_by_brp_flag = false;
#if (PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC) && \
PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)) || \
PA_BUILDFLAG(USE_ASAN_BACKUP_REF_PTR)
if (base::FeatureList::IsEnabled(
base::features::kPartitionAllocBackupRefPtr)) {
// No specified process type means this is the Browser process.
switch (base::features::kBackupRefPtrEnabledProcessesParam.Get()) {
case base::features::BackupRefPtrEnabledProcesses::kBrowserOnly:
process_affected_by_brp_flag = process_type.empty();
break;
case base::features::BackupRefPtrEnabledProcesses::kBrowserAndRenderer:
process_affected_by_brp_flag =
process_type.empty() ||
(process_type == switches::kRendererProcess);
break;
case base::features::BackupRefPtrEnabledProcesses::kNonRenderer:
process_affected_by_brp_flag =
(process_type != switches::kRendererProcess);
break;
case base::features::BackupRefPtrEnabledProcesses::kAllProcesses:
process_affected_by_brp_flag = true;
break;
}
}
#endif // (PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC) &&
// PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)) ||
// PA_BUILDFLAG(USE_ASAN_BACKUP_REF_PTR)
const bool enable_brp =
#if PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC) && \
PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
// kDisabled is equivalent to !IsEnabled(kPartitionAllocBackupRefPtr).
process_affected_by_brp_flag &&
PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT) && \
!PA_BUILDFLAG(FORCE_DISABLE_BACKUP_REF_PTR_FEATURE)
if (base::FeatureList::IsEnabled(
base::features::kPartitionAllocBackupRefPtr) &&
base::features::kBackupRefPtrModeParam.Get() !=
base::features::BackupRefPtrMode::kDisabled;
#else
false;
base::features::BackupRefPtrMode::kDisabled &&
ShouldEnableFeatureOnProcess(
base::features::kBackupRefPtrEnabledProcessesParam.Get(),
process_type)) {
return {
.enable_brp = true,
.extra_extras_size = static_cast<size_t>(
base::features::kBackupRefPtrExtraExtrasSizeParam.Get()),
};
}
#endif
return {
enable_brp,
process_affected_by_brp_flag,
.enable_brp = false,
.extra_extras_size = 0,
};
}
@ -985,8 +1004,15 @@ void PartitionAllocSupport::ReconfigureAfterFeatureListInit(
[[maybe_unused]] BrpConfiguration brp_config =
GetBrpConfiguration(process_type);
#if PA_BUILDFLAG(USE_ASAN_BACKUP_REF_PTR)
if (brp_config.process_affected_by_brp_flag) {
// Configure ASAN hooks to report the `MiraclePtr status`. This is enabled
// only if BackupRefPtr is normally enabled in the current process for the
// current platform. Note that CastOS and iOS aren't protected by BackupRefPtr
// a the moment, so they are excluded.
#if PA_BUILDFLAG(USE_ASAN_BACKUP_REF_PTR) && !PA_BUILDFLAG(IS_CASTOS) && \
!PA_BUILDFLAG(IS_IOS)
if (ShouldEnableFeatureOnProcess(
base::features::kBackupRefPtrEnabledProcessesParam.Get(),
process_type)) {
base::RawPtrAsanService::GetInstance().Configure(
base::EnableDereferenceCheck(
base::features::kBackupRefPtrAsanEnableDereferenceCheckParam.Get()),
@ -1023,6 +1049,10 @@ void PartitionAllocSupport::ReconfigureAfterFeatureListInit(
.Get());
const bool zapping_by_free_flags = base::FeatureList::IsEnabled(
base::features::kPartitionAllocZappingByFreeFlags);
const bool eventually_zero_freed_memory = base::FeatureList::IsEnabled(
base::features::kPartitionAllocEventuallyZeroFreedMemory);
const bool fewer_memory_regions = base::FeatureList::IsEnabled(
base::features::kPartitionAllocFewerMemoryRegions);
#if PA_BUILDFLAG(USE_FREELIST_DISPATCHER)
const bool use_pool_offset_freelists =
@ -1040,17 +1070,37 @@ void PartitionAllocSupport::ReconfigureAfterFeatureListInit(
// check here too to wrap the GetMemoryTaggingModeForCurrentThread() call.
if (!base::FeatureList::IsEnabled(
base::features::kKillPartitionAllocMemoryTagging)) {
// If synchronous mode is enabled from startup it means this is a test and
// memory tagging should be enabled.
if (partition_alloc::internal::GetMemoryTaggingModeForCurrentThread() ==
// If synchronous mode is enabled from startup it means this is a test or it
// was force enabled in Chrome some how so honor that choice.
partition_alloc::TagViolationReportingMode
startup_memory_tagging_reporting_mode =
partition_alloc::internal::GetMemoryTaggingModeForCurrentThread();
if (startup_memory_tagging_reporting_mode ==
partition_alloc::TagViolationReportingMode::kSynchronous) {
enable_memory_tagging = true;
memory_tagging_reporting_mode =
partition_alloc::TagViolationReportingMode::kSynchronous;
// Not enabling permissive mode as this config is used to crash and detect
// bugs.
VLOG(1) << "PartitionAlloc: Memory tagging enabled in SYNC mode at "
"startup (Process: "
<< process_type << ")";
} else {
enable_memory_tagging = ShouldEnableMemoryTagging(process_type);
#if BUILDFLAG(IS_ANDROID)
// Android Scudo does not allow MTE to be re-enabled if MTE was disabled.
if (enable_memory_tagging &&
startup_memory_tagging_reporting_mode ==
partition_alloc::TagViolationReportingMode::kDisabled) {
LOG(ERROR) << "PartitionAlloc: Failed to enable memory tagging due to "
"MTE disabled at startup (Process: "
<< process_type << ")";
debug::DumpWithoutCrashing();
enable_memory_tagging = false;
}
if (enable_memory_tagging) {
// Configure MTE.
switch (base::features::kMemtagModeParam.Get()) {
case base::features::MemtagMode::kSync:
memory_tagging_reporting_mode =
@ -1061,15 +1111,28 @@ void PartitionAllocSupport::ReconfigureAfterFeatureListInit(
partition_alloc::TagViolationReportingMode::kAsynchronous;
break;
}
partition_alloc::PermissiveMte::SetEnabled(base::FeatureList::IsEnabled(
base::features::kPartitionAllocPermissiveMte));
bool enable_permissive_mte = base::FeatureList::IsEnabled(
base::features::kPartitionAllocPermissiveMte);
partition_alloc::PermissiveMte::SetEnabled(enable_permissive_mte);
CHECK(partition_alloc::internal::
ChangeMemoryTaggingModeForAllThreadsPerProcess(
memory_tagging_reporting_mode));
CHECK_EQ(
partition_alloc::internal::GetMemoryTaggingModeForCurrentThread(),
memory_tagging_reporting_mode);
VLOG(1)
<< "PartitionAlloc: Memory tagging enabled in "
<< (memory_tagging_reporting_mode ==
partition_alloc::TagViolationReportingMode::kSynchronous
? "SYNC"
: "ASYNC")
<< " mode (Process: " << process_type << ")";
if (enable_permissive_mte) {
VLOG(1) << "PartitionAlloc: Permissive MTE enabled (Process: "
<< process_type << ")";
}
} else if (base::CPU::GetInstanceNoAllocation().has_mte()) {
// Disable MTE.
memory_tagging_reporting_mode =
partition_alloc::TagViolationReportingMode::kDisabled;
CHECK(partition_alloc::internal::
@ -1078,35 +1141,28 @@ void PartitionAllocSupport::ReconfigureAfterFeatureListInit(
CHECK_EQ(
partition_alloc::internal::GetMemoryTaggingModeForCurrentThread(),
memory_tagging_reporting_mode);
VLOG(1) << "PartitionAlloc: Memory tagging disabled (Process: "
<< process_type << ")";
}
#endif // BUILDFLAG(IS_ANDROID)
}
}
#endif // PA_BUILDFLAG(HAS_MEMORY_TAGGING)
if (enable_memory_tagging) {
CHECK((memory_tagging_reporting_mode ==
partition_alloc::TagViolationReportingMode::kSynchronous) ||
(memory_tagging_reporting_mode ==
partition_alloc::TagViolationReportingMode::kAsynchronous));
} else {
CHECK((memory_tagging_reporting_mode ==
partition_alloc::TagViolationReportingMode::kUndefined) ||
(memory_tagging_reporting_mode ==
partition_alloc::TagViolationReportingMode::kDisabled));
}
allocator_shim::UseSmallSingleSlotSpans use_small_single_slot_spans(
base::FeatureList::IsEnabled(
features::kPartitionAllocUseSmallSingleSlotSpans));
allocator_shim::ConfigurePartitions(
allocator_shim::EnableBrp(brp_config.enable_brp),
brp_config.extra_extras_size,
allocator_shim::EnableMemoryTagging(enable_memory_tagging),
memory_tagging_reporting_mode, bucket_distribution,
allocator_shim::SchedulerLoopQuarantine(scheduler_loop_quarantine),
scheduler_loop_quarantine_branch_capacity_in_bytes,
allocator_shim::ZappingByFreeFlags(zapping_by_free_flags),
allocator_shim::EventuallyZeroFreedMemory(eventually_zero_freed_memory),
allocator_shim::FewerMemoryRegions(fewer_memory_regions),
allocator_shim::UsePoolOffsetFreelists(use_pool_offset_freelists),
use_small_single_slot_spans);
@ -1133,13 +1189,24 @@ void PartitionAllocSupport::ReconfigureAfterFeatureListInit(
->EnableLargeEmptySlotSpanRing();
}
if (process_type == "" &&
base::FeatureList::IsEnabled(
base::features::kPartitionAllocSchedulerLoopQuarantine)) {
// `ReconfigureAfterTaskRunnerInit()` is called on the UI thread.
const size_t capacity_in_bytes = static_cast<size_t>(
base::features::kPartitionAllocSchedulerLoopQuarantineBrowserUICapacity
.Get());
allocator_shim::internal::PartitionAllocMalloc::Allocator()
->SetSchedulerLoopQuarantineThreadLocalBranchCapacity(
capacity_in_bytes);
}
#if PA_BUILDFLAG( \
ENABLE_ALLOCATOR_SHIM_PARTITION_ALLOC_DISPATCH_WITH_ADVANCED_CHECKS_SUPPORT)
bool enable_pa_with_advanced_checks =
ShouldEnablePartitionAllocWithAdvancedChecks(process_type);
if (enable_pa_with_advanced_checks) {
allocator_shim::InstallDispatchToPartitionAllocWithAdvancedChecks(
&g_dispatch_for_advanced_checks);
allocator_shim::InstallCustomDispatchForPartitionAllocWithAdvancedChecks();
}
#endif // PA_BUILDFLAG(
// ENABLE_ALLOCATOR_SHIM_PARTITION_ALLOC_DISPATCH_WITH_ADVANCED_CHECKS_SUPPORT)
@ -1254,6 +1321,15 @@ void PartitionAllocSupport::ReconfigureAfterTaskRunnerInit(
partition_alloc::PartitionRoot::SetSortActiveSlotSpansEnabled(
base::FeatureList::IsEnabled(
base::features::kPartitionAllocSortActiveSlotSpans));
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
if (ShouldEnableShadowMetadata(process_type)) {
partition_alloc::PartitionRoot::EnableShadowMetadata(
partition_alloc::internal::PoolHandleMask::kRegular |
partition_alloc::internal::PoolHandleMask::kBRP |
partition_alloc::internal::PoolHandleMask::kConfigurable);
}
#endif // PA_CONFIG(ENABLE_SHADOW_METADATA)
}
void PartitionAllocSupport::OnForegrounded(bool has_main_frame) {
@ -1308,9 +1384,8 @@ void PartitionAllocSupport::OnBackgrounded() {
// TODO(lizeb): Remove once/if the behavior of idle tasks changes.
base::PostDelayedMemoryReductionTask(
base::SingleThreadTaskRunner::GetCurrentDefault(), FROM_HERE,
base::BindOnce([]() {
::partition_alloc::MemoryReclaimer::Instance()->ReclaimAll();
}),
base::BindOnce(
[] { ::partition_alloc::MemoryReclaimer::Instance()->ReclaimAll(); }),
base::Seconds(10));
#endif // PA_CONFIG(THREAD_CACHE_SUPPORTED)

View file

@ -37,12 +37,21 @@ BASE_EXPORT std::map<std::string, std::string> ProposeSyntheticFinchTrials();
BASE_EXPORT void InstallDanglingRawPtrChecks();
BASE_EXPORT void InstallUnretainedDanglingRawPtrChecks();
// Once called, makes `free()` do nothing. This is done to reduce
// shutdown hangs on CrOS.
// Does nothing if Dangling Pointer Detector (`docs/dangling_ptr.md`)
// is not active.
// Does nothing if allocator shim support is not built.
BASE_EXPORT void MakeFreeNoOp();
// Allows to re-configure PartitionAlloc at run-time.
class BASE_EXPORT PartitionAllocSupport {
public:
struct BrpConfiguration {
bool enable_brp = false;
bool process_affected_by_brp_flag = false;
// TODO(https://crbug.com/371135823): Remove after the investigation.
size_t extra_extras_size = 0;
};
// Reconfigure* functions re-configure PartitionAlloc. It is impossible to

View file

@ -0,0 +1,7 @@
---
Checks: 'google-build-namespaces,
readability-redundant-smartptr-get,
readability-static-accessed-through-instance'
InheritParentConfig: true
HeaderFilterRegex: 'partition_alloc/*'
...

View file

@ -11,8 +11,14 @@ group("buildflags") {
public_deps = [ "src/partition_alloc:buildflags" ]
}
if (is_clang_or_gcc) {
if (use_partition_alloc && is_clang_or_gcc) {
group("partition_alloc") {
public_deps = [ "src/partition_alloc:partition_alloc" ]
}
}
if (use_allocator_shim) {
group("allocator_shim") {
public_deps = [ "src/partition_alloc:allocator_shim" ]
}
}

View file

@ -1,4 +1,3 @@
bartekn@chromium.org
haraken@chromium.org
keishi@chromium.org
lizeb@chromium.org

View file

@ -134,7 +134,7 @@ def CheckCpp17CompatibleHeaders(input_api, output_api):
CPP_20_HEADERS = [
"barrier",
"bit",
"compare",
#"compare", Three-way comparison may be used under appropriate guards.
"format",
"numbers",
"ranges",
@ -161,7 +161,10 @@ def CheckCpp17CompatibleHeaders(input_api, output_api):
sources = lambda affected_file: input_api.FilterSourceFile(
affected_file,
files_to_skip=[],
# compiler_specific.h may use these headers in guarded ways.
files_to_skip=[
r'.*partition_alloc_base/augmentations/compiler_specific\.h'
],
files_to_check=[_SOURCE_FILE_PATTERN])
errors = []
@ -227,3 +230,20 @@ def CheckCpp17CompatibleKeywords(input_api, output_api):
'%s:%d\nPartitionAlloc disallows C++20 keywords: %s'
% (f.LocalPath(), line_number + 1, keyword)))
return errors
# Check `NDEBUG` is not used inside partition_alloc. We prefer to use the
# buildflags `#if PA_BUILDFLAG(IS_DEBUG)` instead.
def CheckNoNDebug(input_api, output_api):
sources = lambda affected_file: input_api.FilterSourceFile(
affected_file,
files_to_skip=[],
files_to_check=[_SOURCE_FILE_PATTERN])
errors = []
for f in input_api.AffectedSourceFiles(sources):
for line_number, line in f.ChangedContents():
if 'NDEBUG' in line:
errors.append(output_api.PresubmitError('%s:%d\nPartitionAlloc'
% (f.LocalPath(), line_number + 1)
+ 'disallows NDEBUG, use PA_BUILDFLAG(IS_DEBUG) instead'))
return errors

View file

@ -15,6 +15,7 @@ use_allocator_shim_default = false
enable_backup_ref_ptr_support_default = false
enable_backup_ref_ptr_slow_checks_default = false
enable_dangling_raw_ptr_checks_default = false
enable_ios_corruption_hardening_default = false
# This is the default build configuration for pointers/raw_ptr*.
raw_ptr_zero_on_construct_default = true

View file

@ -4,6 +4,56 @@
import("//build_overrides/partition_alloc.gni")
# -----------------------------------------------------------------------------
# Note on the use of `xxx_default` variable in partition_alloc.
#
# GN provides default_args() instruction. It is meant to be used by embedders,
# to override the default args declared by the embeddees (e.g. partition_alloc).
# This is the intended way to use GN. It properly interacts with the args.gn
# user's file.
#
# Unfortunately, Chrome and others embedders aren't using it. Instead, they
# expect embeddees to import global '.gni' file from the embedder, e.g.
# `//build_overrides/partition_alloc.gni`. This file sets some `xxx_default`
# variable that will be transferred to the declared args. For instance
# a library would use:
# ```
# import("//build_overrides/library.gni")
# declare_args() {
# xxx = xxx_default
# }
# ```
#
# We don't really want to break embedders when introducing new args. Ideally,
# We would have liked to have defaults for default variables. That would be
# a recursive problem. To resolve it, we sometimes use the `defined(...)`
# instruction to check if the embedder has defined the `xxx_default` variable or
# not.
#
# In general, we should aim to support the embedders that are using GN normally,
# and avoid requiring them to define `xxx_default` in the `//build_overrides`
# -----------------------------------------------------------------------------
# Some embedders uses `is_debug`, it can be used to set the default value of
# `partition_alloc_is_debug_default`.
if (!defined(partition_alloc_is_debug_default)) {
if (defined(is_debug)) {
partition_alloc_is_debug_default = is_debug
} else {
partition_alloc_is_debug_default = false
}
}
# Some embedders uses `dcheck_always_on`, it can be used to set the default
# value of `partition_alloc_dcheck_always_on_default`.
if (!defined(partition_alloc_dcheck_always_on_default)) {
if (defined(dcheck_always_on)) {
partition_alloc_dcheck_always_on_default = dcheck_always_on
} else {
partition_alloc_dcheck_always_on_default = false
}
}
# PartitionAlloc have limited support for MSVC's cl.exe compiler. It can only
# access the generate "buildflags" and the "raw_ptr" definitions implemented
# with RawPtrNoOpImpl. Everything else is considered not supported.
@ -28,8 +78,16 @@ if (is_nacl) {
assert(false, "Unknown CPU: $current_cpu")
}
# Increases the size of the empty slot span ring.
use_large_empty_slot_span_ring = is_mac
# Makes the number of empty slot spans that can remain committed larger in
# foreground mode compared to background mode
# (see `PartitionRoot::AdjustFor(Background|Foreground)`).
#
# Foreground/background modes are used by default on macOS and Windows so this
# must be true on these platforms. It's also true on other platforms to allow
# experiments.
#
# TODO(crbug.com/329199197): Clean this up when experiments are complete.
use_large_empty_slot_span_ring = true
# Disables for Android ARM64 because it actually requires API 31+.
# See partition_alloc/tagging.cc:
@ -40,6 +98,12 @@ has_memory_tagging =
current_cpu == "arm64" && is_clang && !is_asan && is_linux && current_os != "openwrt"
declare_args() {
# Debug configuration.
partition_alloc_is_debug = partition_alloc_is_debug_default
# Enable PA_DCHECKs in PartitionAlloc in release mode.
partition_alloc_dcheck_always_on = partition_alloc_dcheck_always_on_default
# Causes all the allocations to be routed via allocator_shim.cc. Usually,
# the allocator shim will, in turn, route them to PartitionAlloc, but
# other allocators are also supported by the allocator shim.
@ -87,9 +151,17 @@ declare_args() {
# Whether PartitionAlloc dispatch can be replaced with another dispatch with
# some more safety checks at runtime or not. When true, the allocator shim
# provides an extended API to swap PartitionAlloc.
# TODO(https://crbug.com/351974425): Enable this when `use_partition_alloc_as_malloc` is true.
enable_allocator_shim_partition_alloc_dispatch_with_advanced_checks_support =
false
use_partition_alloc_as_malloc
}
declare_args() {
# This is a flag for binary experiment on iOS. When BRP for iOS is enabled,
# we see some un-actionable `DoubleFreeOrCorruptionDetected` crashes.
# This flag enables some extra `CHECK`s to get actionable crash reports.
# TODO(crbug.com/371135823): Remove upon completion of investigation.
enable_ios_corruption_hardening = use_partition_alloc_as_malloc && is_ios &&
enable_ios_corruption_hardening_default
}
assert(
@ -119,18 +191,13 @@ if (use_allocator_shim && is_win) {
# If libcxx_is_shared=false, libc++ is a static library. All libc++ code
# will be run inside the client. The above issue will disappear.
assert(
!is_component_build || (!libcxx_is_shared && !is_debug),
"The allocator shim for the Windows component build needs !libcxx_is_shared && !is_debug.")
!is_component_build || (!libcxx_is_shared && !partition_alloc_is_debug),
"The allocator shim for the Windows component build needs !libcxx_is_shared && !partition_alloc_is_debug.")
}
declare_args() {
use_freeslot_bitmap = false
# Puts the regular and BRP pools right next to each other, so that we can
# check "belongs to one of the two pools" with a single bitmask operation.
# TODO(crbug.com/350104111): Fix ios-simulator failures to remove `!is_ios`.
glue_core_pools = use_partition_alloc_as_malloc && !is_ios
# Introduces pointer compression support in PA. These are 4-byte
# pointers that can point within the core pools (regular and BRP).
#
@ -152,6 +219,23 @@ declare_args() {
# through malloc. Useful for using with tools that intercept malloc, e.g.
# heaptrack.
forward_through_malloc = false
# Enable reentrancy checks at `partition_alloc::internal::Lock`.
# TODO(crbug.com/371135823): Remove upon completion of investigation.
enable_partition_lock_reentrancy_check = enable_ios_corruption_hardening
# This will write a fixed cookie pattern at the end of each allocation, and
# later verify the pattern remain unchanged to ensure there is no OOB write.
# It comes with performance and memory cost, hence enabled only in debug.
use_partition_cookie =
partition_alloc_is_debug || partition_alloc_dcheck_always_on ||
enable_ios_corruption_hardening
# This will change partition cookie size to 4B or 8B, whichever equivalent to
# size of InSlotMetadata. This option is useful for InSlotMetadata corruption
# investigation.
# TODO(crbug.com/371135823): Remove upon completion of investigation.
smaller_partition_cookie = enable_ios_corruption_hardening
}
declare_args() {
@ -231,6 +315,12 @@ declare_args() {
# Platforms where BackupRefPtr hasn't shipped yet:
!is_castos && !is_ios
# While keeping BRP support, override a feature flag to make it disabled
# state. This will overwrite `enable_backup_ref_ptr_feature_flag`.
# TODO(https://crbug.com/372183586): Fix the bug and remove this arg.
force_disable_backup_ref_ptr_feature =
enable_backup_ref_ptr_support && enable_ios_corruption_hardening
# Build support for Dangling Ptr Detection (DPD) via BackupRefPtr (BRP),
# making the raw_ptr<T> implementation to RawPtrBackupRefImpl if active.
enable_dangling_raw_ptr_checks =
@ -263,7 +353,7 @@ declare_args() {
declare_args() {
# Shadow metadata is still under development and only supports Linux
# for now.
enable_shadow_metadata = false
enable_shadow_metadata = is_linux && has_64_bit_pointers
}
declare_args() {
@ -285,12 +375,21 @@ stack_scan_supported =
# PartitionAlloc at all. If `use_partition_alloc` is false, we jam all
# related args to `false`.
#
# We also disable PA-Everywhere and PA-based features in two types of
# toolchains:
# - Toolchains that disable PA-Everywhere explicitly.
# - The rust host build tools toochain, which builds DLLs to dlopen into the
# compiler for proc macros. We would want any allocations to use the same
# paths as the compiler.
#
# Do not clear the following, as they can function outside of PartitionAlloc
# - has_64_bit_pointers
# - has_memory_tagging
if (!use_partition_alloc ||
(defined(toolchain_allows_use_partition_alloc_as_malloc) &&
!toolchain_allows_use_partition_alloc_as_malloc)) {
!toolchain_allows_use_partition_alloc_as_malloc) ||
(defined(toolchain_for_rust_host_build_tools) &&
toolchain_for_rust_host_build_tools)) {
use_partition_alloc_as_malloc = false
glue_core_pools = false
enable_backup_ref_ptr_support = false

View file

@ -29,16 +29,14 @@ record_alloc_info = false
# GWP-ASan is tied to BRP's enablement.
enable_gwp_asan_support = enable_backup_ref_ptr_support
# Pools are a logical concept when address space is 32-bit.
glue_core_pools = glue_core_pools && has_64_bit_pointers
# Pointer compression requires 64-bit pointers.
enable_pointer_compression =
enable_pointer_compression_support && has_64_bit_pointers
# Duplicates the setup Chromium uses to define `DCHECK_IS_ON()`, but avails it
# as a buildflag.
dchecks_are_on = is_debug || dcheck_always_on
partition_alloc_dchecks_are_on =
partition_alloc_is_debug || partition_alloc_dcheck_always_on
# Building PartitionAlloc for Windows component build.
# Currently use build_with_chromium not to affect any third_party code,
@ -138,26 +136,28 @@ pa_buildflag_header("buildflags") {
"ENABLE_DANGLING_RAW_PTR_CHECKS=$enable_dangling_raw_ptr_checks",
"ENABLE_DANGLING_RAW_PTR_FEATURE_FLAG=$enable_dangling_raw_ptr_feature_flag",
"ENABLE_GWP_ASAN_SUPPORT=$enable_gwp_asan_support",
"ENABLE_PARTITION_LOCK_REENTRANCY_CHECK=$enable_partition_lock_reentrancy_check",
"ENABLE_PKEYS=$enable_pkeys",
"ENABLE_POINTER_ARITHMETIC_TRAIT_CHECK=$enable_pointer_arithmetic_trait_check",
"ENABLE_POINTER_COMPRESSION=$enable_pointer_compression",
"ENABLE_POINTER_SUBTRACTION_CHECK=$enable_pointer_subtraction_check",
"ENABLE_SHADOW_METADATA_FOR_64_BITS_POINTERS=$enable_shadow_metadata",
"ENABLE_THREAD_ISOLATION=$enable_pkeys",
"FORCE_DISABLE_BACKUP_REF_PTR_FEATURE=$force_disable_backup_ref_ptr_feature",
"FORCE_ENABLE_RAW_PTR_EXCLUSION=$force_enable_raw_ptr_exclusion",
"FORWARD_THROUGH_MALLOC=$forward_through_malloc",
"GLUE_CORE_POOLS=$glue_core_pools",
"HAS_64_BIT_POINTERS=$has_64_bit_pointers",
"HAS_MEMORY_TAGGING=$has_memory_tagging",
"IS_ANDROID=$is_android",
"IS_CASTOS=$is_castos",
"IS_CAST_ANDROID=$is_cast_android",
"IS_CHROMEOS=$is_chromeos",
"IS_DEBUG=$is_debug",
"IS_DEBUG=$partition_alloc_is_debug",
"RAW_PTR_ZERO_ON_CONSTRUCT=$raw_ptr_zero_on_construct",
"RAW_PTR_ZERO_ON_DESTRUCT=$raw_ptr_zero_on_destruct",
"RAW_PTR_ZERO_ON_MOVE=$raw_ptr_zero_on_move",
"RECORD_ALLOC_INFO=$record_alloc_info",
"SMALLER_PARTITION_COOKIE=$smaller_partition_cookie",
"STACK_SCAN_SUPPORTED=$stack_scan_supported",
"USE_ALLOCATOR_SHIM=$use_allocator_shim",
"USE_ASAN_BACKUP_REF_PTR=$use_asan_backup_ref_ptr",
@ -167,11 +167,12 @@ pa_buildflag_header("buildflags") {
"USE_LARGE_EMPTY_SLOT_SPAN_RING=$use_large_empty_slot_span_ring",
"USE_PARTITION_ALLOC=$use_partition_alloc",
"USE_PARTITION_ALLOC_AS_MALLOC=$use_partition_alloc_as_malloc",
"USE_PARTITION_COOKIE=$use_partition_cookie",
"USE_RAW_PTR_ASAN_UNOWNED_IMPL=$use_raw_ptr_asan_unowned_impl",
"USE_RAW_PTR_BACKUP_REF_IMPL=$use_raw_ptr_backup_ref_impl",
"USE_RAW_PTR_HOOKABLE_IMPL=$use_raw_ptr_hookable_impl",
"ENABLE_ALLOCATOR_SHIM_PARTITION_ALLOC_DISPATCH_WITH_ADVANCED_CHECKS_SUPPORT=$enable_allocator_shim_partition_alloc_dispatch_with_advanced_checks_support",
"DCHECKS_ARE_ON=$dchecks_are_on",
"DCHECKS_ARE_ON=$partition_alloc_dchecks_are_on",
"EXPENSIVE_DCHECKS_ARE_ON=$enable_expensive_dchecks",
"DCHECK_IS_CONFIGURABLE=$dcheck_is_configurable",
"CAN_UNWIND_WITH_FRAME_POINTERS=$can_unwind_with_frame_pointers",
@ -330,7 +331,7 @@ if (is_clang_or_gcc) {
}
}
if (enable_pkeys && is_debug) {
if (enable_pkeys && partition_alloc_is_debug) {
config("no_stack_protector") {
cflags = [ "-fno-stack-protector" ]
}
@ -427,6 +428,7 @@ if (is_clang_or_gcc) {
"partition_bucket.cc",
"partition_bucket.h",
"partition_bucket_lookup.h",
"partition_cookie.cc",
"partition_cookie.h",
"partition_dcheck_helper.cc",
"partition_dcheck_helper.h",
@ -441,6 +443,7 @@ if (is_clang_or_gcc) {
"partition_page_constants.h",
"partition_root.cc",
"partition_root.h",
"partition_shared_mutex.h",
"partition_stats.cc",
"partition_stats.h",
"partition_superpage_extent_entry.h",
@ -565,7 +568,7 @@ if (is_clang_or_gcc) {
# We want to be able to test pkey mode without access to the default pkey.
# This is incompatible with stack protectors since the TLS won't be pkey-tagged.
if (enable_pkeys && is_debug) {
if (enable_pkeys && partition_alloc_is_debug) {
configs += [ ":no_stack_protector" ]
}
}
@ -598,6 +601,7 @@ if (is_clang_or_gcc) {
"partition_alloc_base/debug/stack_trace.cc",
"partition_alloc_base/debug/stack_trace.h",
"partition_alloc_base/export_template.h",
"partition_alloc_base/files/platform_file.h",
"partition_alloc_base/immediate_crash.h",
"partition_alloc_base/log_message.cc",
"partition_alloc_base/log_message.h",
@ -643,11 +647,13 @@ if (is_clang_or_gcc) {
"partition_alloc_base/time/time.h",
"partition_alloc_base/time/time_override.cc",
"partition_alloc_base/time/time_override.h",
"partition_alloc_base/types/same_as_any.h",
"partition_alloc_base/types/strong_alias.h",
"partition_alloc_base/win/win_handle_types.h",
"partition_alloc_base/win/win_handle_types_list.inc",
"partition_alloc_base/win/windows_types.h",
]
libs = []
if (is_win) {
sources += [
@ -659,6 +665,9 @@ if (is_clang_or_gcc) {
"partition_alloc_base/threading/platform_thread_win.cc",
"partition_alloc_base/time/time_win.cc",
]
libs += [
"winmm.lib", # For timeGetTime.
]
}
if (is_posix) {
@ -782,8 +791,6 @@ if (is_clang_or_gcc) {
}
component("allocator_shim") {
visibility = [ ":*" ]
sources = []
deps = []
all_dependent_configs = []
@ -1009,7 +1016,7 @@ if (build_with_chromium) {
]
}
if (enable_pkeys && is_debug && !is_component_build) {
if (enable_pkeys && partition_alloc_is_debug && !is_component_build) {
# This test requires RELRO, which is not enabled in component builds.
# Also, require a debug build, since we only disable stack protectors in
# debug builds in PartitionAlloc (see below why it's needed).

View file

@ -292,7 +292,7 @@ AslrMask(uintptr_t bits) {
#endif // PA_BUILDFLAG(PA_ARCH_CPU_32_BITS)
// clang-format on
// clang-format on
} // namespace internal

View file

@ -3,6 +3,7 @@
// found in the LICENSE file.
#include "partition_alloc/allocation_guard.h"
#include "partition_alloc/partition_alloc_base/immediate_crash.h"
#include "partition_alloc/partition_alloc_config.h"

View file

@ -77,7 +77,17 @@ ThreadCacheProcessScopeForTesting::ThreadCacheProcessScopeForTesting(
// Replace ThreadCache's PartitionRoot.
ThreadCache::SwapForTesting(root_);
} else {
if (!regular_was_enabled_) {
bool regular_was_disabled = !regular_was_enabled_;
#if PA_BUILDFLAG(IS_WIN)
// ThreadCache may be tombstone because of the previous test. In the
// case, we have to remove tombstone and re-create ThreadCache for
// a new test.
if (ThreadCache::IsTombstone(ThreadCache::Get())) {
ThreadCache::RemoveTombstoneForTesting();
regular_was_disabled = true;
}
#endif
if (regular_was_disabled) {
EnablePartitionAllocThreadCacheForRootIfDisabled(root_);
ThreadCache::SwapForTesting(root_);
}
@ -89,6 +99,7 @@ ThreadCacheProcessScopeForTesting::ThreadCacheProcessScopeForTesting(
#endif // PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
PA_CHECK(ThreadCache::Get());
PA_CHECK(!ThreadCache::IsTombstone(ThreadCache::Get()));
}
ThreadCacheProcessScopeForTesting::~ThreadCacheProcessScopeForTesting() {

View file

@ -46,7 +46,6 @@ PA_ALWAYS_INLINE constexpr size_t AlignUpInSlotMetadataSizeForApple(
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
namespace {
// Utility functions to define a bit field.
template <typename CountType>
static constexpr CountType SafeShift(CountType lhs, int rhs) {
@ -64,7 +63,6 @@ struct BitField {
~(SafeShift<CountType>(1, lo) - 1);
}
};
} // namespace
// Special-purpose atomic bit field class mainly used by RawPtrBackupRefImpl.
// Formerly known as `PartitionRefCount`, but renamed to support usage that is

View file

@ -7,7 +7,7 @@
namespace partition_alloc::internal {
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
PartitionRoot& InternalAllocatorRoot() {
static internal::base::NoDestructor<PartitionRoot> allocator([]() {
static internal::base::NoDestructor<PartitionRoot> allocator([] {
// Disable features using the internal root to avoid reentrancy issue.
PartitionOptions opts;
opts.thread_cache = PartitionOptions::kDisabled;
@ -37,8 +37,4 @@ void InternalPartitionAllocated::operator delete(void* ptr, std::align_val_t) {
InternalAllocatorRoot().Free<FreeFlags::kNoHooks>(ptr);
}
// A deleter for `std::unique_ptr<T>`.
void InternalPartitionDeleter::operator()(void* ptr) const {
InternalAllocatorRoot().Free<FreeFlags::kNoHooks>(ptr);
}
} // namespace partition_alloc::internal

View file

@ -48,8 +48,6 @@ T* ConstructAtInternalPartition(Args&&... args) {
}
// Destroy an object on heap in the internal partition.
// TODO(crbug.com/40274826) This is an unused function. Start using it in tests
// and/or in production code.
template <typename T>
void DestroyAtInternalPartition(T* ptr) {
// Destroying an array is not supported.

View file

@ -67,14 +67,13 @@ template <typename T, typename... Args>
T* ConstructAtInternalPartition(Args&&... args);
// Destroy an object on heap in the internal partition.
// TODO(crbug.com/40274826) This is an unused function. Start using it in tests
// and/or in production code.
template <typename T>
void DestroyAtInternalPartition(T* ptr);
// A deleter for `std::unique_ptr<T>`.
struct PA_COMPONENT_EXPORT(PARTITION_ALLOC) InternalPartitionDeleter final {
void operator()(void* ptr) const;
template <typename T>
struct InternalPartitionDeleter final {
void operator()(T* ptr) const { DestroyAtInternalPartition(ptr); }
};
} // namespace partition_alloc::internal

View file

@ -9,19 +9,51 @@
#include "partition_alloc/partition_root.h"
namespace partition_alloc::internal {
namespace {
// An utility to lock only if a condition is met.
class PA_SCOPED_LOCKABLE ConditionalScopedGuard {
// Utility classes to lock only if a condition is met.
template <>
class PA_SCOPED_LOCKABLE
LightweightQuarantineBranch::CompileTimeConditionalScopedGuard<
LightweightQuarantineBranch::LockRequired::kNotRequired> {
public:
PA_ALWAYS_INLINE ConditionalScopedGuard(bool condition, Lock& lock)
PA_ALWAYS_INLINE explicit CompileTimeConditionalScopedGuard(Lock& lock)
PA_EXCLUSIVE_LOCK_FUNCTION(lock) {}
// For some reason, defaulting this causes a thread safety annotation failure.
PA_ALWAYS_INLINE
~CompileTimeConditionalScopedGuard() // NOLINT(modernize-use-equals-default)
PA_UNLOCK_FUNCTION() {}
};
template <>
class PA_SCOPED_LOCKABLE
LightweightQuarantineBranch::CompileTimeConditionalScopedGuard<
LightweightQuarantineBranch::LockRequired::kRequired> {
public:
PA_ALWAYS_INLINE explicit CompileTimeConditionalScopedGuard(Lock& lock)
PA_EXCLUSIVE_LOCK_FUNCTION(lock)
: lock_(lock) {
lock_.Acquire();
}
PA_ALWAYS_INLINE ~CompileTimeConditionalScopedGuard() PA_UNLOCK_FUNCTION() {
lock_.Release();
}
private:
Lock& lock_;
};
class PA_SCOPED_LOCKABLE
LightweightQuarantineBranch::RuntimeConditionalScopedGuard {
public:
PA_ALWAYS_INLINE RuntimeConditionalScopedGuard(bool condition, Lock& lock)
PA_EXCLUSIVE_LOCK_FUNCTION(lock)
: condition_(condition), lock_(lock) {
if (condition_) {
lock_.Acquire();
}
}
PA_ALWAYS_INLINE ~ConditionalScopedGuard() PA_UNLOCK_FUNCTION() {
PA_ALWAYS_INLINE ~RuntimeConditionalScopedGuard() PA_UNLOCK_FUNCTION() {
if (condition_) {
lock_.Release();
}
@ -32,8 +64,6 @@ class PA_SCOPED_LOCKABLE ConditionalScopedGuard {
Lock& lock_;
};
} // namespace
LightweightQuarantineBranch LightweightQuarantineRoot::CreateBranch(
const LightweightQuarantineBranchConfig& config) {
return LightweightQuarantineBranch(*this, config);
@ -44,7 +74,12 @@ LightweightQuarantineBranch::LightweightQuarantineBranch(
const LightweightQuarantineBranchConfig& config)
: root_(root),
lock_required_(config.lock_required),
branch_capacity_in_bytes_(config.branch_capacity_in_bytes) {}
branch_capacity_in_bytes_(config.branch_capacity_in_bytes) {
if (lock_required_) {
to_be_freed_working_memory_ =
ConstructAtInternalPartition<ToBeFreedArray>();
}
}
LightweightQuarantineBranch::LightweightQuarantineBranch(
LightweightQuarantineBranch&& b)
@ -55,57 +90,23 @@ LightweightQuarantineBranch::LightweightQuarantineBranch(
branch_capacity_in_bytes_(
b.branch_capacity_in_bytes_.load(std::memory_order_relaxed)) {
b.branch_size_in_bytes_ = 0;
if (lock_required_) {
to_be_freed_working_memory_.store(b.to_be_freed_working_memory_.exchange(
nullptr, std::memory_order_relaxed),
std::memory_order_relaxed);
}
}
LightweightQuarantineBranch::~LightweightQuarantineBranch() {
Purge();
}
bool LightweightQuarantineBranch::Quarantine(
void* object,
SlotSpanMetadata<MetadataKind::kReadOnly>* slot_span,
uintptr_t slot_start,
size_t usable_size) {
PA_DCHECK(usable_size == root_.allocator_root_.GetSlotUsableSize(slot_span));
const size_t capacity_in_bytes =
branch_capacity_in_bytes_.load(std::memory_order_relaxed);
if (capacity_in_bytes < usable_size) [[unlikely]] {
// Even if this branch dequarantines all entries held by it, this entry
// cannot fit within the capacity.
root_.allocator_root_.FreeNoHooksImmediate(object, slot_span, slot_start);
root_.quarantine_miss_count_.fetch_add(1u, std::memory_order_relaxed);
return false;
if (lock_required_) {
DestroyAtInternalPartition(to_be_freed_working_memory_.exchange(
nullptr, std::memory_order_relaxed));
}
{
ConditionalScopedGuard guard(lock_required_, lock_);
// Dequarantine some entries as required.
PurgeInternal(capacity_in_bytes - usable_size);
// Put the entry onto the list.
branch_size_in_bytes_ += usable_size;
slots_.push_back({slot_start, usable_size});
// Swap randomly so that the quarantine list remain shuffled.
// This is not uniformly random, but sufficiently random.
const size_t random_index = random_.RandUint32() % slots_.size();
std::swap(slots_[random_index], slots_.back());
}
// Update stats (not locked).
root_.count_.fetch_add(1, std::memory_order_relaxed);
root_.size_in_bytes_.fetch_add(usable_size, std::memory_order_relaxed);
root_.cumulative_count_.fetch_add(1, std::memory_order_relaxed);
root_.cumulative_size_in_bytes_.fetch_add(usable_size,
std::memory_order_relaxed);
return true;
}
bool LightweightQuarantineBranch::IsQuarantinedForTesting(void* object) {
ConditionalScopedGuard guard(lock_required_, lock_);
RuntimeConditionalScopedGuard guard(lock_required_, lock_);
uintptr_t slot_start =
root_.allocator_root_.ObjectToSlotStartUnchecked(object);
for (const auto& slot : slots_) {
@ -121,12 +122,120 @@ void LightweightQuarantineBranch::SetCapacityInBytes(size_t capacity_in_bytes) {
}
void LightweightQuarantineBranch::Purge() {
ConditionalScopedGuard guard(lock_required_, lock_);
RuntimeConditionalScopedGuard guard(lock_required_, lock_);
PurgeInternal(0);
PA_DCHECK(slots_.empty());
slots_.shrink_to_fit();
}
template <LightweightQuarantineBranch::LockRequired lock_required>
bool LightweightQuarantineBranch::QuarantineInternal(
void* object,
SlotSpanMetadata<MetadataKind::kReadOnly>* slot_span,
uintptr_t slot_start,
size_t usable_size) {
PA_DCHECK(lock_required_ ? lock_required == LockRequired::kRequired
: lock_required == LockRequired::kNotRequired);
PA_DCHECK(usable_size == root_.allocator_root_.GetSlotUsableSize(slot_span));
const size_t capacity_in_bytes =
branch_capacity_in_bytes_.load(std::memory_order_relaxed);
if (capacity_in_bytes < usable_size) [[unlikely]] {
// Even if this branch dequarantines all entries held by it, this entry
// cannot fit within the capacity.
root_.allocator_root_.FreeNoHooksImmediate(object, slot_span, slot_start);
root_.quarantine_miss_count_.fetch_add(1u, std::memory_order_relaxed);
return false;
}
if constexpr (lock_required == LockRequired::kNotRequired) {
// Although there is no need to actually acquire the lock as
// LockRequired::kNotRequired is specified,
// a CompileTimeConditionalScopedGuard is necessary in order to touch
// `slots_` as `slots_` is annotated with `PA_GUARDED_BY(lock_)`.
// CompileTimeConditionalScopedGuard's ctor and dtor behave as
// PA_EXCLUSIVE_LOCK_FUNCTION and PA_UNLOCK_FUNCTION.
CompileTimeConditionalScopedGuard<lock_required> guard(lock_);
// Dequarantine some entries as required.
PurgeInternal(capacity_in_bytes - usable_size);
// Put the entry onto the list.
branch_size_in_bytes_ += usable_size;
slots_.push_back({slot_start, usable_size});
// Swap randomly so that the quarantine list remain shuffled.
// This is not uniformly random, but sufficiently random.
const size_t random_index = random_.RandUint32() % slots_.size();
std::swap(slots_[random_index], slots_.back());
} else {
std::unique_ptr<ToBeFreedArray, InternalPartitionDeleter<ToBeFreedArray>>
to_be_freed;
size_t num_of_slots = 0;
{
CompileTimeConditionalScopedGuard<lock_required> guard(lock_);
// Borrow the reserved working memory from to_be_freed_working_memory_,
// and set nullptr to it indicating that it's in use.
to_be_freed.reset(to_be_freed_working_memory_.exchange(nullptr));
if (!to_be_freed) {
// When the reserved working memory has already been in use by another
// thread, fall back to allocate another chunk of working memory.
to_be_freed.reset(ConstructAtInternalPartition<ToBeFreedArray>());
}
// Dequarantine some entries as required. Save the objects to be
// deallocated into `to_be_freed`.
PurgeInternalWithDefferedFree(capacity_in_bytes - usable_size,
*to_be_freed, num_of_slots);
// Put the entry onto the list.
branch_size_in_bytes_ += usable_size;
slots_.push_back({slot_start, usable_size});
// Swap randomly so that the quarantine list remain shuffled.
// This is not uniformly random, but sufficiently random.
const size_t random_index = random_.RandUint32() % slots_.size();
std::swap(slots_[random_index], slots_.back());
}
// Actually deallocate the dequarantined objects.
BatchFree(*to_be_freed, num_of_slots);
// Return the possibly-borrowed working memory to
// to_be_freed_working_memory_. It doesn't matter much if it's really
// borrowed or locally-allocated. The important facts are 1) to_be_freed is
// non-null, and 2) to_be_freed_working_memory_ may likely be null (because
// this or another thread has already borrowed it). It's simply good to make
// to_be_freed_working_memory_ non-null whenever possible. Maybe yet another
// thread would be about to borrow the working memory.
to_be_freed.reset(
to_be_freed_working_memory_.exchange(to_be_freed.release()));
}
// Update stats (not locked).
root_.count_.fetch_add(1, std::memory_order_relaxed);
root_.size_in_bytes_.fetch_add(usable_size, std::memory_order_relaxed);
root_.cumulative_count_.fetch_add(1, std::memory_order_relaxed);
root_.cumulative_size_in_bytes_.fetch_add(usable_size,
std::memory_order_relaxed);
return true;
}
template bool LightweightQuarantineBranch::QuarantineInternal<
LightweightQuarantineBranch::LockRequired::kNotRequired>(
void* object,
SlotSpanMetadata<MetadataKind::kReadOnly>* slot_span,
uintptr_t slot_start,
size_t usable_size);
template bool LightweightQuarantineBranch::QuarantineInternal<
LightweightQuarantineBranch::LockRequired::kRequired>(
void* object,
SlotSpanMetadata<MetadataKind::kReadOnly>* slot_span,
uintptr_t slot_start,
size_t usable_size);
PA_ALWAYS_INLINE void LightweightQuarantineBranch::PurgeInternal(
size_t target_size_in_bytes) {
int64_t freed_count = 0;
@ -163,4 +272,53 @@ PA_ALWAYS_INLINE void LightweightQuarantineBranch::PurgeInternal(
root_.count_.fetch_sub(freed_count, std::memory_order_relaxed);
}
PA_ALWAYS_INLINE void
LightweightQuarantineBranch::PurgeInternalWithDefferedFree(
size_t target_size_in_bytes,
ToBeFreedArray& to_be_freed,
size_t& num_of_slots) {
num_of_slots = 0;
int64_t freed_size_in_bytes = 0;
// Dequarantine some entries as required.
while (target_size_in_bytes < branch_size_in_bytes_) {
PA_DCHECK(!slots_.empty());
// As quarantined entries are shuffled, picking last entry is equivalent to
// picking random entry.
const QuarantineSlot& to_free = slots_.back();
const size_t to_free_size = to_free.usable_size;
to_be_freed[num_of_slots++] = to_free.slot_start;
slots_.pop_back();
freed_size_in_bytes += to_free_size;
branch_size_in_bytes_ -= to_free_size;
if (num_of_slots >= kMaxFreeTimesPerPurge) {
break;
}
}
root_.size_in_bytes_.fetch_sub(freed_size_in_bytes,
std::memory_order_relaxed);
root_.count_.fetch_sub(num_of_slots, std::memory_order_relaxed);
}
PA_ALWAYS_INLINE void LightweightQuarantineBranch::BatchFree(
const ToBeFreedArray& to_be_freed,
size_t num_of_slots) {
for (size_t i = 0; i < num_of_slots; ++i) {
const uintptr_t slot_start = to_be_freed[i];
PA_DCHECK(slot_start);
auto* slot_span =
SlotSpanMetadata<MetadataKind::kReadOnly>::FromSlotStart(slot_start);
void* object = root_.allocator_root_.SlotStartToObject(slot_start);
PA_DCHECK(slot_span ==
SlotSpanMetadata<MetadataKind::kReadOnly>::FromObject(object));
root_.allocator_root_.FreeNoHooksImmediate(object, slot_span, slot_start);
}
}
} // namespace partition_alloc::internal

View file

@ -108,10 +108,35 @@ class PA_COMPONENT_EXPORT(PARTITION_ALLOC) LightweightQuarantineBranch {
// as much as possible. If the object is too large, this may return
// `false`, meaning that quarantine request has failed (and freed
// immediately). Otherwise, returns `true`.
bool Quarantine(void* object,
SlotSpanMetadata<MetadataKind::kReadOnly>* slot_span,
uintptr_t slot_start,
size_t usable_size);
PA_ALWAYS_INLINE bool Quarantine(
void* object,
SlotSpanMetadata<MetadataKind::kReadOnly>* slot_span,
uintptr_t slot_start,
size_t usable_size) {
return lock_required_ ? QuarantineWithAcquiringLock(object, slot_span,
slot_start, usable_size)
: QuarantineWithoutAcquiringLock(
object, slot_span, slot_start, usable_size);
}
// Despite that LightweightQuarantineBranchConfig::lock_required_ is already
// specified, we provide two versions `With/WithoutAcquiringLock` so that we
// can avoid the overhead of runtime conditional branches.
PA_ALWAYS_INLINE bool QuarantineWithAcquiringLock(
void* object,
SlotSpanMetadata<MetadataKind::kReadOnly>* slot_span,
uintptr_t slot_start,
size_t usable_size) {
PA_MUSTTAIL return QuarantineInternal<LockRequired::kRequired>(
object, slot_span, slot_start, usable_size);
}
PA_ALWAYS_INLINE bool QuarantineWithoutAcquiringLock(
void* object,
SlotSpanMetadata<MetadataKind::kReadOnly>* slot_span,
uintptr_t slot_start,
size_t usable_size) {
PA_MUSTTAIL return QuarantineInternal<LockRequired::kNotRequired>(
object, slot_span, slot_start, usable_size);
}
// Dequarantine all entries **held by this branch**.
// It is possible that another branch with entries and it remains untouched.
@ -130,9 +155,27 @@ class PA_COMPONENT_EXPORT(PARTITION_ALLOC) LightweightQuarantineBranch {
void SetCapacityInBytes(size_t capacity_in_bytes);
private:
enum class LockRequired { kNotRequired, kRequired };
template <LockRequired lock_required>
class PA_SCOPED_LOCKABLE CompileTimeConditionalScopedGuard;
class PA_SCOPED_LOCKABLE RuntimeConditionalScopedGuard;
// `ToBeFreedArray` is used in `PurgeInternalInTwoPhases1of2` and
// `PurgeInternalInTwoPhases2of2`. See the function comment about the purpose.
// In order to avoid reentrancy issues, we must not deallocate any object in
// `Quarantine`. So, std::vector is not an option. std::array doesn't
// deallocate, plus, std::array has perf advantages.
static constexpr size_t kMaxFreeTimesPerPurge = 1024;
using ToBeFreedArray = std::array<uintptr_t, kMaxFreeTimesPerPurge>;
LightweightQuarantineBranch(Root& root,
const LightweightQuarantineBranchConfig& config);
template <LockRequired lock_required>
bool QuarantineInternal(void* object,
SlotSpanMetadata<MetadataKind::kReadOnly>* slot_span,
uintptr_t slot_start,
size_t usable_size);
// Try to dequarantine entries to satisfy below:
// root_.size_in_bytes_ <= target_size_in_bytes
// It is possible that this branch cannot satisfy the
@ -140,6 +183,19 @@ class PA_COMPONENT_EXPORT(PARTITION_ALLOC) LightweightQuarantineBranch {
// constraint, call `Purge()` for each branch in sequence, synchronously.
PA_ALWAYS_INLINE void PurgeInternal(size_t target_size_in_bytes)
PA_EXCLUSIVE_LOCKS_REQUIRED(lock_);
// In order to reduce thread contention, dequarantines entries in two phases:
// Phase 1) With the lock acquired, saves `slot_start`s of the quarantined
// objects in an array, and shrinks `slots_`. Then, releases the lock so
// that another thread can quarantine an object.
// Phase 2) Without the lock acquired, deallocates objects saved in the
// array in Phase 1. This may take some time, but doesn't block other
// threads.
PA_ALWAYS_INLINE void PurgeInternalWithDefferedFree(
size_t target_size_in_bytes,
ToBeFreedArray& to_be_freed,
size_t& num_of_slots) PA_EXCLUSIVE_LOCKS_REQUIRED(lock_);
PA_ALWAYS_INLINE void BatchFree(const ToBeFreedArray& to_be_freed,
size_t num_of_slots);
Root& root_;
@ -161,9 +217,35 @@ class PA_COMPONENT_EXPORT(PARTITION_ALLOC) LightweightQuarantineBranch {
// Using `std::atomic` here so that other threads can update this value.
std::atomic_size_t branch_capacity_in_bytes_;
// This working memory is temporarily needed only while dequarantining
// objects in slots_ when lock_required_ is true. However, allocating this
// working memory on stack may cause stack overflow [1]. Plus, it's non-
// negligible perf penalty to allocate and deallocate this working memory on
// heap only while dequarantining. So, we reserve one chunk of working memory
// on heap during the entire lifetime of this branch object and try to reuse
// this working memory among threads. Only when thread contention occurs, we
// allocate and deallocate another chunk of working memory.
// [1] https://issues.chromium.org/issues/387508217
std::atomic<ToBeFreedArray*> to_be_freed_working_memory_ = nullptr;
friend class LightweightQuarantineRoot;
};
extern template PA_COMPONENT_EXPORT(
PARTITION_ALLOC) bool LightweightQuarantineBranch::
QuarantineInternal<LightweightQuarantineBranch::LockRequired::kNotRequired>(
void* object,
SlotSpanMetadata<MetadataKind::kReadOnly>* slot_span,
uintptr_t slot_start,
size_t usable_size);
extern template PA_COMPONENT_EXPORT(
PARTITION_ALLOC) bool LightweightQuarantineBranch::
QuarantineInternal<LightweightQuarantineBranch::LockRequired::kRequired>(
void* object,
SlotSpanMetadata<MetadataKind::kReadOnly>* slot_span,
uintptr_t slot_start,
size_t usable_size);
} // namespace internal
} // namespace partition_alloc

View file

@ -15,6 +15,7 @@
#include <array>
#include <cstdlib>
#include <limits>
#endif // PA_BUILDFLAG(IS_WIN)
namespace partition_alloc {
@ -26,7 +27,8 @@ namespace internal {
// Crash server classifies base::internal::OnNoMemoryInternal as OOM.
// TODO(crbug.com/40158212): Update to
// partition_alloc::internal::base::internal::OnNoMemoryInternal
PA_NOINLINE void OnNoMemoryInternal(size_t size) {
[[noreturn]] PA_NOINLINE PA_NOT_TAIL_CALLED void OnNoMemoryInternal(
size_t size) {
g_oom_size = size;
size_t tmp_size = size;
internal::base::debug::Alias(&tmp_size);

View file

@ -22,8 +22,8 @@ namespace partition_alloc {
// |size| is the size of the failed allocation, or 0 if not known.
// Crash reporting classifies such crashes as OOM.
// Must be allocation-safe.
PA_COMPONENT_EXPORT(PARTITION_ALLOC)
void TerminateBecauseOutOfMemory(size_t size);
[[noreturn]] PA_NOT_TAIL_CALLED PA_COMPONENT_EXPORT(
PARTITION_ALLOC) void TerminateBecauseOutOfMemory(size_t size);
// Records the size of the allocation that caused the current OOM crash, for
// consumption by Breakpad.

View file

@ -26,7 +26,7 @@
#define PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR __attribute__((const))
#elif (PA_BUILDFLAG(IS_ANDROID) && PA_BUILDFLAG(PA_ARCH_CPU_64_BITS)) || \
(PA_BUILDFLAG(IS_LINUX) && PA_BUILDFLAG(PA_ARCH_CPU_ARM64)) || \
(PA_BUILDFLAG(IS_LINUX) && PA_BUILDFLAG(PA_ARCH_CPU_ARM64)) || \
(PA_BUILDFLAG(IS_LINUX) && PA_BUILDFLAG(PA_ARCH_CPU_PPC64))
// This should work for all POSIX (if needed), but currently all other
// supported OS/architecture combinations use either hard-coded values
@ -39,6 +39,7 @@
#define PAGE_ALLOCATOR_CONSTANTS_DECLARE_CONSTEXPR __attribute__((const))
#include <unistd.h>
#include <atomic>
namespace partition_alloc::internal {
@ -69,9 +70,30 @@ extern PageCharacteristics page_characteristics;
// Ability to name anonymous VMAs is available on some, but not all Linux-based
// systems.
#if PA_BUILDFLAG(IS_ANDROID) || PA_BUILDFLAG(IS_LINUX)
#if PA_BUILDFLAG(IS_ANDROID) || PA_BUILDFLAG(IS_LINUX) || \
PA_BUILDFLAG(IS_CHROMEOS)
#include <sys/prctl.h>
#if (PA_BUILDFLAG(IS_LINUX) || PA_BUILDFLAG(IS_CHROMEOS)) && \
!(defined(PR_SET_VMA) && defined(PR_SET_VMA_ANON_NAME))
// The PR_SET_VMA* symbols are originally from
// https://android.googlesource.com/platform/bionic/+/lollipop-release/libc/private/bionic_prctl.h
// and were subsequently added to mainline Linux in Jan 2022, see
// https://github.com/torvalds/linux/commit/9a10064f5625d5572c3626c1516e0bebc6c9fe9b.
//
// Define them to support compiling with older headers.
#if !defined(PR_SET_VMA)
#define PR_SET_VMA 0x53564d41
#endif
#if !defined(PR_SET_VMA_ANON_NAME)
#define PR_SET_VMA_ANON_NAME 0
#endif
#endif // (PA_BUILDFLAG(IS_LINUX) || PA_BUILDFLAG(IS_CHROMEOS)) &&
// !(defined(PR_SET_VMA) && defined(PR_SET_VMA_ANON_NAME))
#if defined(PR_SET_VMA) && defined(PR_SET_VMA_ANON_NAME)
#define LINUX_NAME_REGION 1
#endif

View file

@ -28,8 +28,6 @@
namespace partition_alloc::internal {
namespace {
zx::resource GetVmexResource() {
auto vmex_resource_client =
component::Connect<fuchsia_kernel::VmexResource>();
@ -94,8 +92,6 @@ zx_vm_option_t PageAccessibilityToZxVmOptions(
PA_NOTREACHED();
}
} // namespace
// zx_vmar_map() will fail if the VMO cannot be mapped at |vmar_offset|, i.e.
// |hint| is not advisory.
constexpr bool kHintIsAdvisory = false;

View file

@ -7,10 +7,39 @@
#include "partition_alloc/build_config.h"
#include "partition_alloc/buildflags.h"
#include "partition_alloc/page_allocator.h"
#include "partition_alloc/partition_alloc_base/notreached.h"
#if PA_BUILDFLAG(IS_APPLE)
#include "partition_alloc/partition_alloc_base/apple/foundation_util.h"
#if PA_BUILDFLAG(IS_IOS)
#include "partition_alloc/partition_alloc_base/ios/ios_util.h"
#elif PA_BUILDFLAG(IS_MAC)
#include "partition_alloc/partition_alloc_base/mac/mac_util.h"
#else
#error "Unknown platform"
#endif
#include <Availability.h>
#include <Security/Security.h>
#include <mach/mach.h>
#include "partition_alloc/partition_alloc_base/apple/scoped_cftyperef.h"
#endif
#if PA_BUILDFLAG(IS_MAC)
// SecTaskGetCodeSignStatus is marked as unavailable on macOS, although its
// available on iOS and other Apple operating systems. It is, in fact, present
// on the system since macOS 10.12.
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wavailability"
uint32_t SecTaskGetCodeSignStatus(SecTaskRef task) API_AVAILABLE(macos(10.12));
#pragma clang diagnostic pop
#endif // PA_BUILDFLAG(IS_MAC)
#if PA_BUILDFLAG(HAS_MEMORY_TAGGING) || \
(defined(__ARM_FEATURE_BTI_DEFAULT) && (__ARM_FEATURE_BTI_DEFAULT == 1) && \
!defined(__MUSL__))
__has_include(<sys/ifunc.h>))
struct __ifunc_arg_t;
#include "partition_alloc/aarch64_support.h"
@ -91,4 +120,95 @@ int GetAccessFlags(PageAccessibilityConfiguration accessibility)
}
#endif
#if defined(LINUX_NAME_REGION)
void NameRegion(void* start, size_t length, PageTag page_tag) {
// Important: All the names should be string literals. As per prctl.h in
// //third_party/android_toolchain/ndk the kernel keeps a pointer to the name
// instead of copying it.
//
// Having the name in .rodata ensures that the pointer remains valid as
// long as the mapping is alive.
const char* name = nullptr;
switch (page_tag) {
case PageTag::kSimulation:
name = "simulation";
break;
case PageTag::kBlinkGC:
name = "blink_gc";
break;
case PageTag::kPartitionAlloc:
name = "partition_alloc";
break;
case PageTag::kChromium:
name = "chromium";
break;
case PageTag::kV8:
name = "v8";
break;
default:
PA_NOTREACHED();
}
// No error checking on purpose, used for debugging only.
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, start, length, name);
}
#endif // defined(LINUX_NAME_REGION)
#if PA_BUILDFLAG(IS_MAC)
// Tests whether the version of macOS supports the MAP_JIT flag and if the
// current process is signed with the hardened runtime and the allow-jit
// entitlement, returning whether MAP_JIT should be used to allocate regions
// that will contain JIT-compiled executable code.
bool UseMapJit() {
// Until determining that the hardened runtime is enabled, early returns will
// return true, so that MAP_JIT will be used. This is important on arm64,
// which only allows pages to be simultaneously writable and executable when
// in a region allocated with MAP_JIT, regardless of code signing options. On
// arm64, an attempt to set a non-MAP_JIT page as simultaneously writable and
// executable fails with EPERM. Although this is not enforced on x86_64,
// MAP_JIT is harmless in that case.
base::apple::ScopedCFTypeRef<SecTaskRef> task(
SecTaskCreateFromSelf(kCFAllocatorDefault));
if (!task) {
return true;
}
uint32_t flags = SecTaskGetCodeSignStatus(task);
if (!(flags & kSecCodeSignatureRuntime)) {
// The hardened runtime is not enabled. Note that kSecCodeSignatureRuntime
// == CS_RUNTIME.
return true;
}
// The hardened runtime is enabled. From this point on, early returns must
// return false, indicating that MAP_JIT is not to be used. Its an error
// (EINVAL) to use MAP_JIT with the hardened runtime unless the JIT
// entitlement is specified.
base::apple::ScopedCFTypeRef<CFTypeRef> jit_entitlement(
SecTaskCopyValueForEntitlement(
task.get(), CFSTR("com.apple.security.cs.allow-jit"), nullptr));
if (!jit_entitlement) {
return false;
}
return base::apple::CFCast<CFBooleanRef>(jit_entitlement.get()) ==
kCFBooleanTrue;
}
#elif PA_BUILDFLAG(IS_IOS)
bool UseMapJit() {
// Always enable MAP_JIT in simulator as it is supported unconditionally.
#if TARGET_IPHONE_SIMULATOR
return true;
#else
// TODO(crbug.com/40255826): Fill this out when the API it is
// available.
return false;
#endif // TARGET_IPHONE_SIMULATOR
}
#endif // PA_BUILDFLAG(IS_IOS)
} // namespace partition_alloc::internal

View file

@ -19,29 +19,14 @@
#include "partition_alloc/oom.h"
#include "partition_alloc/page_allocator.h"
#include "partition_alloc/page_allocator_constants.h"
#include "partition_alloc/partition_alloc_base/notreached.h"
#include "partition_alloc/partition_alloc_base/posix/eintr_wrapper.h"
#include "partition_alloc/partition_alloc_check.h"
#include "partition_alloc/thread_isolation/thread_isolation.h"
#if PA_BUILDFLAG(IS_APPLE)
#include "partition_alloc/partition_alloc_base/apple/foundation_util.h"
#if PA_BUILDFLAG(IS_IOS)
#include "partition_alloc/partition_alloc_base/ios/ios_util.h"
#elif PA_BUILDFLAG(IS_MAC)
#include "partition_alloc/partition_alloc_base/mac/mac_util.h"
#else
#error "Unknown platform"
#endif
#include "partition_alloc/partition_alloc_base/apple/scoped_cftyperef.h"
#include <Availability.h>
#include <Security/Security.h>
#include <mach/mach.h>
#endif
#if PA_BUILDFLAG(IS_ANDROID) || PA_BUILDFLAG(IS_LINUX)
#include <sys/prctl.h>
#endif
#if PA_BUILDFLAG(IS_LINUX) || PA_BUILDFLAG(IS_CHROMEOS)
#include <sys/resource.h>
#endif
@ -50,114 +35,19 @@
#define MAP_ANONYMOUS MAP_ANON
#endif
#if PA_BUILDFLAG(IS_MAC)
// SecTaskGetCodeSignStatus is marked as unavailable on macOS, although its
// available on iOS and other Apple operating systems. It is, in fact, present
// on the system since macOS 10.12.
#pragma clang diagnostic push
#pragma clang diagnostic ignored "-Wavailability"
uint32_t SecTaskGetCodeSignStatus(SecTaskRef task) API_AVAILABLE(macos(10.12));
#pragma clang diagnostic pop
#endif // PA_BUILDFLAG(IS_MAC)
namespace partition_alloc::internal {
namespace {
#if defined(LINUX_NAME_REGION)
void NameRegion(void* start, size_t length, PageTag page_tag) {
// Important: All the names should be string literals. As per prctl.h in
// //third_party/android_toolchain/ndk the kernel keeps a pointer to the name
// instead of copying it.
//
// Having the name in .rodata ensures that the pointer remains valid as
// long as the mapping is alive.
const char* name = nullptr;
switch (page_tag) {
case PageTag::kSimulation:
name = "simulation";
break;
case PageTag::kBlinkGC:
name = "blink_gc";
break;
case PageTag::kPartitionAlloc:
name = "partition_alloc";
break;
case PageTag::kChromium:
name = "chromium";
break;
case PageTag::kV8:
name = "v8";
break;
default:
PA_NOTREACHED();
break;
}
// No error checking on purpose, testing only.
prctl(PR_SET_VMA, PR_SET_VMA_ANON_NAME, start, length, name);
}
void NameRegion(void* start, size_t length, PageTag page_tag);
#endif // defined(LINUX_NAME_REGION)
#if PA_BUILDFLAG(IS_MAC)
#if PA_BUILDFLAG(IS_APPLE)
// Tests whether the version of macOS supports the MAP_JIT flag and if the
// current process is signed with the hardened runtime and the allow-jit
// entitlement, returning whether MAP_JIT should be used to allocate regions
// that will contain JIT-compiled executable code.
bool UseMapJit() {
// Until determining that the hardened runtime is enabled, early returns will
// return true, so that MAP_JIT will be used. This is important on arm64,
// which only allows pages to be simultaneously writable and executable when
// in a region allocated with MAP_JIT, regardless of code signing options. On
// arm64, an attempt to set a non-MAP_JIT page as simultaneously writable and
// executable fails with EPERM. Although this is not enforced on x86_64,
// MAP_JIT is harmless in that case.
base::apple::ScopedCFTypeRef<SecTaskRef> task(
SecTaskCreateFromSelf(kCFAllocatorDefault));
if (!task) {
return true;
}
uint32_t flags = SecTaskGetCodeSignStatus(task);
if (!(flags & kSecCodeSignatureRuntime)) {
// The hardened runtime is not enabled. Note that kSecCodeSignatureRuntime
// == CS_RUNTIME.
return true;
}
// The hardened runtime is enabled. From this point on, early returns must
// return false, indicating that MAP_JIT is not to be used. Its an error
// (EINVAL) to use MAP_JIT with the hardened runtime unless the JIT
// entitlement is specified.
base::apple::ScopedCFTypeRef<CFTypeRef> jit_entitlement(
SecTaskCopyValueForEntitlement(
task.get(), CFSTR("com.apple.security.cs.allow-jit"), nullptr));
if (!jit_entitlement) {
return false;
}
return base::apple::CFCast<CFBooleanRef>(jit_entitlement.get()) ==
kCFBooleanTrue;
}
#elif PA_BUILDFLAG(IS_IOS)
bool UseMapJit() {
// Always enable MAP_JIT in simulator as it is supported unconditionally.
#if TARGET_IPHONE_SIMULATOR
return true;
#else
// TODO(crbug.com/40255826): Fill this out when the API it is
// available.
return false;
#endif // TARGET_IPHONE_SIMULATOR
}
bool UseMapJit();
#endif // PA_BUILDFLAG(IS_IOS)
} // namespace
// |mmap| uses a nearby address if the hint address is blocked.
constexpr bool kHintIsAdvisory = true;

View file

@ -7,6 +7,7 @@
#include <array>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <ostream>
#include <string>
@ -18,6 +19,7 @@
#include "partition_alloc/partition_alloc_base/bits.h"
#include "partition_alloc/partition_alloc_base/compiler_specific.h"
#include "partition_alloc/partition_alloc_base/debug/alias.h"
#include "partition_alloc/partition_alloc_base/files/platform_file.h"
#include "partition_alloc/partition_alloc_check.h"
#include "partition_alloc/partition_alloc_config.h"
#include "partition_alloc/partition_alloc_constants.h"
@ -88,9 +90,12 @@ std::ptrdiff_t PartitionAddressSpace::brp_pool_shadow_offset_ = 0;
std::ptrdiff_t PartitionAddressSpace::configurable_pool_shadow_offset_ = 0;
// File descriptors for shared mappings.
int PartitionAddressSpace::regular_pool_fd_ = -1;
int PartitionAddressSpace::brp_pool_fd_ = -1;
int PartitionAddressSpace::configurable_pool_fd_ = -1;
base::PlatformFile PartitionAddressSpace::regular_pool_fd_ =
base::kInvalidPlatformFile;
base::PlatformFile PartitionAddressSpace::brp_pool_fd_ =
base::kInvalidPlatformFile;
base::PlatformFile PartitionAddressSpace::configurable_pool_fd_ =
base::kInvalidPlatformFile;
uintptr_t PartitionAddressSpace::pool_shadow_address_ =
PartitionAddressSpace::kUninitializedPoolBaseAddress;
@ -101,8 +106,7 @@ uintptr_t PartitionAddressSpace::pool_shadow_address_ =
#error Dynamic pool size is only supported on iOS.
#endif
namespace {
bool IsIOSTestProcess() {
bool PartitionAddressSpace::IsIOSTestProcess() {
// On iOS, only applications with the extended virtual addressing entitlement
// can use a large address space. Since Earl Grey test runner apps cannot get
// entitlements, they must use a much smaller pool size. Similarly,
@ -133,24 +137,11 @@ bool IsIOSTestProcess() {
return has_suffix("Runner") || has_suffix("ios_web_view_inttests");
}
} // namespace
PA_ALWAYS_INLINE size_t PartitionAddressSpace::RegularPoolSize() {
return IsIOSTestProcess() ? kRegularPoolSizeForIOSTestProcess
: kRegularPoolSize;
}
PA_ALWAYS_INLINE size_t PartitionAddressSpace::BRPPoolSize() {
return IsIOSTestProcess() ? kBRPPoolSizeForIOSTestProcess : kBRPPoolSize;
}
#endif // PA_CONFIG(DYNAMICALLY_SELECT_POOL_SIZE)
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
size_t PartitionAddressSpace::RegularPoolShadowSize() {
return RegularPoolSize();
}
size_t PartitionAddressSpace::BRPPoolShadowSize() {
return BRPPoolSize();
size_t PartitionAddressSpace::CorePoolShadowSize() {
return CorePoolSize();
}
size_t PartitionAddressSpace::ConfigurablePoolShadowSize() {
@ -163,26 +154,16 @@ void PartitionAddressSpace::Init() {
return;
}
const size_t regular_pool_size = RegularPoolSize();
const size_t brp_pool_size = BRPPoolSize();
const size_t core_pool_size = CorePoolSize();
#if PA_BUILDFLAG(GLUE_CORE_POOLS)
// Gluing core pools (regular & BRP) makes sense only when both pools are of
// the same size. This the only way we can check belonging to either of the
// two with a single bitmask operation.
PA_CHECK(regular_pool_size == brp_pool_size);
// TODO(crbug.com/40238514): Support PA_ENABLE_SHADOW_METADATA.
int pools_fd = -1;
size_t glued_pool_sizes = regular_pool_size * 2;
size_t glued_pool_sizes = core_pool_size * 2;
// Note, BRP pool requires to be preceded by a "forbidden zone", which is
// conveniently taken care of by the last guard page of the regular pool.
setup_.regular_pool_base_address_ =
AllocPages(glued_pool_sizes, glued_pool_sizes,
PageAccessibilityConfiguration(
PageAccessibilityConfiguration::kInaccessible),
PageTag::kPartitionAlloc, pools_fd);
PageTag::kPartitionAlloc);
#if PA_BUILDFLAG(IS_ANDROID)
// On Android, Adreno-GSL library fails to mmap if we snatch address
// 0x400000000. Find a different address instead.
@ -191,7 +172,7 @@ void PartitionAddressSpace::Init() {
AllocPages(glued_pool_sizes, glued_pool_sizes,
PageAccessibilityConfiguration(
PageAccessibilityConfiguration::kInaccessible),
PageTag::kPartitionAlloc, pools_fd);
PageTag::kPartitionAlloc);
FreePages(setup_.regular_pool_base_address_, glued_pool_sizes);
setup_.regular_pool_base_address_ = new_base_address;
}
@ -200,81 +181,45 @@ void PartitionAddressSpace::Init() {
HandlePoolAllocFailure();
}
setup_.brp_pool_base_address_ =
setup_.regular_pool_base_address_ + regular_pool_size;
#else // PA_BUILDFLAG(GLUE_CORE_POOLS)
setup_.regular_pool_base_address_ =
AllocPages(regular_pool_size, regular_pool_size,
PageAccessibilityConfiguration(
PageAccessibilityConfiguration::kInaccessible),
PageTag::kPartitionAlloc);
if (!setup_.regular_pool_base_address_) {
HandlePoolAllocFailure();
}
// Reserve an extra allocation granularity unit before the BRP pool, but keep
// the pool aligned at BRPPoolSize(). A pointer immediately past an allocation
// is a valid pointer, and having a "forbidden zone" before the BRP pool
// prevents such a pointer from "sneaking into" the pool.
const size_t kForbiddenZoneSize = PageAllocationGranularity();
uintptr_t base_address = AllocPagesWithAlignOffset(
0, brp_pool_size + kForbiddenZoneSize, brp_pool_size,
brp_pool_size - kForbiddenZoneSize,
PageAccessibilityConfiguration(
PageAccessibilityConfiguration::kInaccessible),
PageTag::kPartitionAlloc, -1);
if (!base_address) {
HandlePoolAllocFailure();
}
setup_.brp_pool_base_address_ = base_address + kForbiddenZoneSize;
#endif // PA_BUILDFLAG(GLUE_CORE_POOLS)
setup_.regular_pool_base_address_ + core_pool_size;
#if PA_CONFIG(DYNAMICALLY_SELECT_POOL_SIZE)
setup_.regular_pool_base_mask_ = ~(regular_pool_size - 1);
setup_.brp_pool_base_mask_ = ~(brp_pool_size - 1);
#if PA_BUILDFLAG(GLUE_CORE_POOLS)
// When PA_GLUE_CORE_POOLS is on, the BRP pool is placed at the end of the
// regular pool, effectively forming one virtual pool of a twice bigger
// size. Adjust the mask appropriately.
setup_.core_pools_base_mask_ = setup_.regular_pool_base_mask_ << 1;
PA_DCHECK(setup_.core_pools_base_mask_ == (setup_.brp_pool_base_mask_ << 1));
#endif
setup_.core_pool_base_mask_ = ~(core_pool_size - 1);
// The BRP pool is placed at the end of the regular pool, effectively forming
// one virtual pool of a twice bigger size. Adjust the mask appropriately.
setup_.glued_pools_base_mask_ = setup_.core_pool_base_mask_ << 1;
#endif // PA_CONFIG(DYNAMICALLY_SELECT_POOL_SIZE)
AddressPoolManager::GetInstance().Add(
kRegularPoolHandle, setup_.regular_pool_base_address_, regular_pool_size);
kRegularPoolHandle, setup_.regular_pool_base_address_, core_pool_size);
AddressPoolManager::GetInstance().Add(
kBRPPoolHandle, setup_.brp_pool_base_address_, brp_pool_size);
kBRPPoolHandle, setup_.brp_pool_base_address_, core_pool_size);
// Sanity check pool alignment.
PA_DCHECK(!(setup_.regular_pool_base_address_ & (regular_pool_size - 1)));
PA_DCHECK(!(setup_.brp_pool_base_address_ & (brp_pool_size - 1)));
#if PA_BUILDFLAG(GLUE_CORE_POOLS)
PA_DCHECK(!(setup_.regular_pool_base_address_ & (core_pool_size - 1)));
PA_DCHECK(!(setup_.brp_pool_base_address_ & (core_pool_size - 1)));
PA_DCHECK(!(setup_.regular_pool_base_address_ & (glued_pool_sizes - 1)));
#endif
// Sanity check pool belonging.
PA_DCHECK(!IsInRegularPool(setup_.regular_pool_base_address_ - 1));
PA_DCHECK(IsInRegularPool(setup_.regular_pool_base_address_));
PA_DCHECK(IsInRegularPool(setup_.regular_pool_base_address_ +
regular_pool_size - 1));
PA_DCHECK(
!IsInRegularPool(setup_.regular_pool_base_address_ + regular_pool_size));
IsInRegularPool(setup_.regular_pool_base_address_ + core_pool_size - 1));
PA_DCHECK(
!IsInRegularPool(setup_.regular_pool_base_address_ + core_pool_size));
PA_DCHECK(!IsInBRPPool(setup_.brp_pool_base_address_ - 1));
PA_DCHECK(IsInBRPPool(setup_.brp_pool_base_address_));
PA_DCHECK(IsInBRPPool(setup_.brp_pool_base_address_ + brp_pool_size - 1));
PA_DCHECK(!IsInBRPPool(setup_.brp_pool_base_address_ + brp_pool_size));
#if PA_BUILDFLAG(GLUE_CORE_POOLS)
PA_DCHECK(IsInBRPPool(setup_.brp_pool_base_address_ + core_pool_size - 1));
PA_DCHECK(!IsInBRPPool(setup_.brp_pool_base_address_ + core_pool_size));
PA_DCHECK(!IsInCorePools(setup_.regular_pool_base_address_ - 1));
PA_DCHECK(IsInCorePools(setup_.regular_pool_base_address_));
PA_DCHECK(
IsInCorePools(setup_.regular_pool_base_address_ + regular_pool_size - 1));
PA_DCHECK(
IsInCorePools(setup_.regular_pool_base_address_ + regular_pool_size));
IsInCorePools(setup_.regular_pool_base_address_ + core_pool_size - 1));
PA_DCHECK(IsInCorePools(setup_.regular_pool_base_address_ + core_pool_size));
PA_DCHECK(IsInCorePools(setup_.brp_pool_base_address_ - 1));
PA_DCHECK(IsInCorePools(setup_.brp_pool_base_address_));
PA_DCHECK(IsInCorePools(setup_.brp_pool_base_address_ + brp_pool_size - 1));
PA_DCHECK(!IsInCorePools(setup_.brp_pool_base_address_ + brp_pool_size));
#endif // PA_BUILDFLAG(GLUE_CORE_POOLS)
PA_DCHECK(IsInCorePools(setup_.brp_pool_base_address_ + core_pool_size - 1));
PA_DCHECK(!IsInCorePools(setup_.brp_pool_base_address_ + core_pool_size));
#if PA_BUILDFLAG(ENABLE_POINTER_COMPRESSION)
CompressedPointerBaseGlobal::SetBase(setup_.regular_pool_base_address_);
@ -356,18 +301,9 @@ void PartitionAddressSpace::UninitForTesting() {
#if PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
UninitThreadIsolatedPoolForTesting(); // IN-TEST
#endif
#if PA_BUILDFLAG(GLUE_CORE_POOLS)
// The core pools (regular & BRP) were allocated using a single allocation of
// double size.
FreePages(setup_.regular_pool_base_address_, 2 * RegularPoolSize());
#else // PA_BUILDFLAG(GLUE_CORE_POOLS)
FreePages(setup_.regular_pool_base_address_, RegularPoolSize());
// For BRP pool, the allocation region includes a "forbidden zone" before the
// pool.
const size_t kForbiddenZoneSize = PageAllocationGranularity();
FreePages(setup_.brp_pool_base_address_ - kForbiddenZoneSize,
BRPPoolSize() + kForbiddenZoneSize);
#endif // PA_BUILDFLAG(GLUE_CORE_POOLS)
FreePages(setup_.regular_pool_base_address_, 2 * CorePoolSize());
// Do not free pages for the configurable pool, because its memory is owned
// by someone else, but deinitialize it nonetheless.
setup_.regular_pool_base_address_ = kUninitializedPoolBaseAddress;
@ -421,9 +357,10 @@ void PartitionAddressSpace::UninitThreadIsolatedPoolForTesting() {
namespace {
int CreateAnonymousFileForMapping([[maybe_unused]] const char* name,
[[maybe_unused]] size_t size) {
int fd = -1;
base::PlatformFile CreateAnonymousFileForMapping(
[[maybe_unused]] const char* name,
[[maybe_unused]] size_t size) {
base::PlatformFile fd = base::kInvalidPlatformFile;
#if PA_BUILDFLAG(IS_LINUX) || PA_BUILDFLAG(IS_CHROMEOS)
// TODO(crbug.com/40238514): if memfd_secret() is available, try
// memfd_secret() first.
@ -444,7 +381,7 @@ void PartitionAddressSpace::InitShadowMetadata(PoolHandleMask mask) {
// Reserve 1 address space for all pools.
const size_t shadow_pool_size =
std::max(ConfigurablePoolShadowSize(),
std::max(RegularPoolShadowSize(), BRPPoolShadowSize()));
std::max(CorePoolShadowSize(), CorePoolShadowSize()));
// Reserve virtual address space for the shadow pool.
uintptr_t pool_shadow_address =
@ -461,7 +398,7 @@ void PartitionAddressSpace::InitShadowMetadata(PoolHandleMask mask) {
// Set up a memory file for the given pool, and init |offset|.
if (ContainsFlags(mask, PoolHandleMask::kConfigurable)) {
if (configurable_pool_fd_ == -1) {
if (configurable_pool_fd_ == base::kInvalidPlatformFile) {
PA_DCHECK(pool_shadow_address_);
PA_DCHECK(configurable_pool_shadow_offset_ == 0);
configurable_pool_fd_ = CreateAnonymousFileForMapping(
@ -472,22 +409,22 @@ void PartitionAddressSpace::InitShadowMetadata(PoolHandleMask mask) {
}
}
if (ContainsFlags(mask, PoolHandleMask::kBRP)) {
if (brp_pool_fd_ == -1) {
if (brp_pool_fd_ == base::kInvalidPlatformFile) {
PA_DCHECK(pool_shadow_address_);
PA_DCHECK(brp_pool_shadow_offset_ == 0);
brp_pool_fd_ =
CreateAnonymousFileForMapping("brp_pool_shadow", BRPPoolShadowSize());
brp_pool_fd_ = CreateAnonymousFileForMapping("brp_pool_shadow",
CorePoolShadowSize());
brp_pool_shadow_offset_ =
pool_shadow_address_ - BRPPoolBase() +
SystemPageSize() * kSystemPageOffsetOfBRPPoolShadow;
}
}
if (ContainsFlags(mask, PoolHandleMask::kRegular)) {
if (regular_pool_fd_ == -1) {
if (regular_pool_fd_ == base::kInvalidPlatformFile) {
PA_DCHECK(pool_shadow_address_);
PA_DCHECK(regular_pool_shadow_offset_ == 0);
regular_pool_fd_ = CreateAnonymousFileForMapping("regular_pool_shadow",
RegularPoolShadowSize());
CorePoolShadowSize());
regular_pool_shadow_offset_ =
pool_shadow_address_ - RegularPoolBase() +
SystemPageSize() * kSystemPageOffsetOfRegularPoolShadow;
@ -502,7 +439,7 @@ void PartitionAddressSpace::MapMetadata(uintptr_t super_page,
PA_DCHECK(pool_shadow_address_);
PA_DCHECK(0u == (super_page & kSuperPageOffsetMask));
std::ptrdiff_t offset;
int pool_fd = -1;
base::PlatformFile pool_fd = base::kInvalidPlatformFile;
uintptr_t base_address;
if (IsInRegularPool(super_page)) {
@ -561,13 +498,13 @@ void PartitionAddressSpace::UnmapShadowMetadata(uintptr_t super_page,
switch (pool) {
case kRegularPoolHandle:
PA_DCHECK(RegularPoolBase() <= super_page);
PA_DCHECK((super_page - RegularPoolBase()) < RegularPoolSize());
PA_DCHECK((super_page - RegularPoolBase()) < CorePoolSize());
PA_DCHECK(IsShadowMetadataEnabled(kRegularPoolHandle));
offset = regular_pool_shadow_offset_;
break;
case kBRPPoolHandle:
PA_DCHECK(BRPPoolBase() <= super_page);
PA_DCHECK((super_page - BRPPoolBase()) < BRPPoolSize());
PA_DCHECK((super_page - BRPPoolBase()) < CorePoolSize());
PA_DCHECK(IsShadowMetadataEnabled(kBRPPoolHandle));
offset = brp_pool_shadow_offset_;
break;

View file

@ -15,6 +15,7 @@
#include "partition_alloc/partition_alloc_base/bits.h"
#include "partition_alloc/partition_alloc_base/compiler_specific.h"
#include "partition_alloc/partition_alloc_base/component_export.h"
#include "partition_alloc/partition_alloc_base/files/platform_file.h"
#include "partition_alloc/partition_alloc_base/notreached.h"
#include "partition_alloc/partition_alloc_check.h"
#include "partition_alloc/partition_alloc_config.h"
@ -46,18 +47,12 @@ class PA_COMPONENT_EXPORT(PARTITION_ALLOC) PartitionAddressSpace {
};
#if PA_CONFIG(DYNAMICALLY_SELECT_POOL_SIZE)
PA_ALWAYS_INLINE static uintptr_t BRPPoolBaseMask() {
return setup_.brp_pool_base_mask_;
}
PA_ALWAYS_INLINE static uintptr_t RegularPoolBaseMask() {
return setup_.regular_pool_base_mask_;
PA_ALWAYS_INLINE static uintptr_t CorePoolBaseMask() {
return setup_.core_pool_base_mask_;
}
#else
PA_ALWAYS_INLINE static constexpr uintptr_t BRPPoolBaseMask() {
return kBRPPoolBaseMask;
}
PA_ALWAYS_INLINE static constexpr uintptr_t RegularPoolBaseMask() {
return kRegularPoolBaseMask;
PA_ALWAYS_INLINE static constexpr uintptr_t CorePoolBaseMask() {
return kCorePoolBaseMask;
}
#endif
@ -73,13 +68,13 @@ class PA_COMPONENT_EXPORT(PARTITION_ALLOC) PartitionAddressSpace {
if (IsInBRPPool(address)) {
pool = kBRPPoolHandle;
base = setup_.brp_pool_base_address_;
base_mask = BRPPoolBaseMask();
base_mask = CorePoolBaseMask();
} else
#endif // PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
if (IsInRegularPool(address)) {
pool = kRegularPoolHandle;
base = setup_.regular_pool_base_address_;
base_mask = RegularPoolBaseMask();
base_mask = CorePoolBaseMask();
} else if (IsInConfigurablePool(address)) {
PA_DCHECK(IsConfigurablePoolInitialized());
pool = kConfigurablePoolHandle;
@ -150,9 +145,9 @@ class PA_COMPONENT_EXPORT(PARTITION_ALLOC) PartitionAddressSpace {
// Returns false for nullptr.
PA_ALWAYS_INLINE static bool IsInRegularPool(uintptr_t address) {
#if PA_CONFIG(DYNAMICALLY_SELECT_POOL_SIZE)
const uintptr_t regular_pool_base_mask = setup_.regular_pool_base_mask_;
const uintptr_t regular_pool_base_mask = setup_.core_pool_base_mask_;
#else
constexpr uintptr_t regular_pool_base_mask = kRegularPoolBaseMask;
constexpr uintptr_t regular_pool_base_mask = kCorePoolBaseMask;
#endif
return (address & regular_pool_base_mask) ==
setup_.regular_pool_base_address_;
@ -165,34 +160,29 @@ class PA_COMPONENT_EXPORT(PARTITION_ALLOC) PartitionAddressSpace {
// Returns false for nullptr.
PA_ALWAYS_INLINE static bool IsInBRPPool(uintptr_t address) {
#if PA_CONFIG(DYNAMICALLY_SELECT_POOL_SIZE)
const uintptr_t brp_pool_base_mask = setup_.brp_pool_base_mask_;
const uintptr_t brp_pool_base_mask = setup_.core_pool_base_mask_;
#else
constexpr uintptr_t brp_pool_base_mask = kBRPPoolBaseMask;
constexpr uintptr_t brp_pool_base_mask = kCorePoolBaseMask;
#endif
return (address & brp_pool_base_mask) == setup_.brp_pool_base_address_;
}
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
PA_ALWAYS_INLINE static uintptr_t BRPPoolBase() {
#if PA_BUILDFLAG(GLUE_CORE_POOLS)
return RegularPoolBase() + RegularPoolSize();
#else
return setup_.brp_pool_base_address_;
#endif // PA_BUILDFLAG(GLUE_CORE_POOLS)
return RegularPoolBase() + CorePoolSize();
}
#endif // PA_CONFIG(ENABLE_SHADOW_METADATA)
#if PA_BUILDFLAG(GLUE_CORE_POOLS)
// Checks whether the address belongs to either regular or BRP pool.
// Returns false for nullptr.
PA_ALWAYS_INLINE static bool IsInCorePools(uintptr_t address) {
#if PA_CONFIG(DYNAMICALLY_SELECT_POOL_SIZE)
const uintptr_t core_pools_base_mask = setup_.core_pools_base_mask_;
const uintptr_t core_pools_base_mask = setup_.glued_pools_base_mask_;
#else
// When PA_GLUE_CORE_POOLS is on, the BRP pool is placed at the end of the
// regular pool, effectively forming one virtual pool of a twice bigger
// size. Adjust the mask appropriately.
constexpr uintptr_t core_pools_base_mask = kRegularPoolBaseMask << 1;
// The BRP pool is placed at the end of the regular pool, effectively
// forming one virtual pool of a twice bigger size. Adjust the mask
// appropriately.
constexpr uintptr_t core_pools_base_mask = kCorePoolBaseMask << 1;
#endif // PA_CONFIG(DYNAMICALLY_SELECT_POOL_SIZE)
bool ret =
(address & core_pools_base_mask) == setup_.regular_pool_base_address_;
@ -200,15 +190,12 @@ class PA_COMPONENT_EXPORT(PARTITION_ALLOC) PartitionAddressSpace {
return ret;
}
#if PA_CONFIG(DYNAMICALLY_SELECT_POOL_SIZE)
PA_ALWAYS_INLINE static size_t CorePoolsSize() {
return RegularPoolSize() * 2;
}
PA_ALWAYS_INLINE static size_t CorePoolsSize() { return CorePoolSize() * 2; }
#else
PA_ALWAYS_INLINE static constexpr size_t CorePoolsSize() {
return RegularPoolSize() * 2;
return CorePoolSize() * 2;
}
#endif // PA_CONFIG(DYNAMICALLY_SELECT_POOL_SIZE)
#endif // PA_BUILDFLAG(GLUE_CORE_POOLS)
PA_ALWAYS_INLINE static uintptr_t OffsetInBRPPool(uintptr_t address) {
PA_DCHECK(IsInBRPPool(address));
@ -235,15 +222,15 @@ class PA_COMPONENT_EXPORT(PARTITION_ALLOC) PartitionAddressSpace {
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
PA_ALWAYS_INLINE static bool IsShadowMetadataEnabledOnRegularPool() {
return regular_pool_fd_ != -1;
return regular_pool_fd_ != base::kInvalidPlatformFile;
}
PA_ALWAYS_INLINE static bool IsShadowMetadataEnabledOnBRPPool() {
return brp_pool_fd_ != -1;
return brp_pool_fd_ != base::kInvalidPlatformFile;
}
PA_ALWAYS_INLINE static bool IsShadowMetadataEnabledOnConfigurablePool() {
return configurable_pool_fd_ != -1;
return configurable_pool_fd_ != base::kInvalidPlatformFile;
}
PA_ALWAYS_INLINE static bool IsShadowMetadataEnabled(pool_handle pool) {
@ -290,8 +277,7 @@ class PA_COMPONENT_EXPORT(PARTITION_ALLOC) PartitionAddressSpace {
static constexpr size_t kSystemPageOffsetOfBRPPoolShadow = 2u;
static constexpr size_t kSystemPageOffsetOfConfigurablePoolShadow = 4u;
static size_t RegularPoolShadowSize();
static size_t BRPPoolShadowSize();
static size_t CorePoolShadowSize();
static size_t ConfigurablePoolShadowSize();
PA_ALWAYS_INLINE static std::ptrdiff_t RegularPoolShadowOffset() {
@ -327,8 +313,7 @@ class PA_COMPONENT_EXPORT(PARTITION_ALLOC) PartitionAddressSpace {
PA_ALWAYS_INLINE static bool IsInPoolShadow(const void* ptr) {
uintptr_t ptr_as_uintptr = reinterpret_cast<uintptr_t>(ptr);
return (pool_shadow_address_ <= ptr_as_uintptr &&
(ptr_as_uintptr < pool_shadow_address_ + RegularPoolSize() ||
ptr_as_uintptr < pool_shadow_address_ + BRPPoolSize() ||
(ptr_as_uintptr < pool_shadow_address_ + CorePoolSize() ||
ptr_as_uintptr < pool_shadow_address_ + kConfigurablePoolMaxSize));
}
#endif // PA_BUILDFLAG(DCHECKS_ARE_ON)
@ -346,15 +331,15 @@ class PA_COMPONENT_EXPORT(PARTITION_ALLOC) PartitionAddressSpace {
private:
#if PA_CONFIG(DYNAMICALLY_SELECT_POOL_SIZE)
PA_ALWAYS_INLINE static size_t RegularPoolSize();
PA_ALWAYS_INLINE static size_t BRPPoolSize();
static bool IsIOSTestProcess();
PA_ALWAYS_INLINE static size_t CorePoolSize() {
return IsIOSTestProcess() ? kCorePoolSizeForIOSTestProcess : kCorePoolSize;
}
#else
// The pool sizes should be as large as maximum whenever possible.
PA_ALWAYS_INLINE static constexpr size_t RegularPoolSize() {
return kRegularPoolSize;
}
PA_ALWAYS_INLINE static constexpr size_t BRPPoolSize() {
return kBRPPoolSize;
PA_ALWAYS_INLINE static constexpr size_t CorePoolSize() {
return kCorePoolSize;
}
#endif // PA_CONFIG(DYNAMICALLY_SELECT_POOL_SIZE)
@ -383,10 +368,8 @@ class PA_COMPONENT_EXPORT(PARTITION_ALLOC) PartitionAddressSpace {
// certain PA allocations must be located inside a given virtual address
// region. One use case for this Pool is V8 Sandbox, which requires that
// ArrayBuffers be located inside of it.
static constexpr size_t kRegularPoolSize = kPoolMaxSize;
static constexpr size_t kBRPPoolSize = kPoolMaxSize;
static_assert(base::bits::HasSingleBit(kRegularPoolSize));
static_assert(base::bits::HasSingleBit(kBRPPoolSize));
static constexpr size_t kCorePoolSize = kPoolMaxSize;
static_assert(base::bits::HasSingleBit(kCorePoolSize));
#if PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
static constexpr size_t kThreadIsolatedPoolSize = kGiB / 4;
static_assert(base::bits::HasSingleBit(kThreadIsolatedPoolSize));
@ -406,22 +389,16 @@ class PA_COMPONENT_EXPORT(PARTITION_ALLOC) PartitionAddressSpace {
// We can't afford pool sizes as large as kPoolMaxSize in iOS EarlGrey tests,
// since the test process cannot use an extended virtual address space (see
// crbug.com/1250788).
static constexpr size_t kRegularPoolSizeForIOSTestProcess = kGiB / 4;
static constexpr size_t kBRPPoolSizeForIOSTestProcess = kGiB / 4;
static_assert(kRegularPoolSizeForIOSTestProcess < kRegularPoolSize);
static_assert(kBRPPoolSizeForIOSTestProcess < kBRPPoolSize);
static_assert(base::bits::HasSingleBit(kRegularPoolSizeForIOSTestProcess));
static_assert(base::bits::HasSingleBit(kBRPPoolSizeForIOSTestProcess));
static constexpr size_t kCorePoolSizeForIOSTestProcess = kGiB / 4;
static_assert(kCorePoolSizeForIOSTestProcess < kCorePoolSize);
static_assert(base::bits::HasSingleBit(kCorePoolSizeForIOSTestProcess));
#endif // PA_BUILDFLAG(IOS_IOS)
#if !PA_CONFIG(DYNAMICALLY_SELECT_POOL_SIZE)
// Masks used to easy determine belonging to a pool.
static constexpr uintptr_t kRegularPoolOffsetMask =
static_cast<uintptr_t>(kRegularPoolSize) - 1;
static constexpr uintptr_t kRegularPoolBaseMask = ~kRegularPoolOffsetMask;
static constexpr uintptr_t kBRPPoolOffsetMask =
static_cast<uintptr_t>(kBRPPoolSize) - 1;
static constexpr uintptr_t kBRPPoolBaseMask = ~kBRPPoolOffsetMask;
static constexpr uintptr_t kCorePoolOffsetMask =
static_cast<uintptr_t>(kCorePoolSize) - 1;
static constexpr uintptr_t kCorePoolBaseMask = ~kCorePoolOffsetMask;
#endif // !PA_CONFIG(DYNAMICALLY_SELECT_POOL_SIZE)
#if PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
@ -451,11 +428,8 @@ class PA_COMPONENT_EXPORT(PARTITION_ALLOC) PartitionAddressSpace {
kUninitializedPoolBaseAddress;
#endif
#if PA_CONFIG(DYNAMICALLY_SELECT_POOL_SIZE)
uintptr_t regular_pool_base_mask_ = 0;
uintptr_t brp_pool_base_mask_ = 0;
#if PA_BUILDFLAG(GLUE_CORE_POOLS)
uintptr_t core_pools_base_mask_ = 0;
#endif
uintptr_t core_pool_base_mask_ = 0;
uintptr_t glued_pools_base_mask_ = 0;
#endif // PA_CONFIG(DYNAMICALLY_SELECT_POOL_SIZE)
uintptr_t configurable_pool_base_mask_ = 0;
#if PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
@ -481,10 +455,9 @@ class PA_COMPONENT_EXPORT(PARTITION_ALLOC) PartitionAddressSpace {
static std::ptrdiff_t regular_pool_shadow_offset_;
static std::ptrdiff_t brp_pool_shadow_offset_;
static std::ptrdiff_t configurable_pool_shadow_offset_;
// TODO(crbug.com/40238514): Use platform file handles instead of |int|.
static int regular_pool_fd_;
static int brp_pool_fd_;
static int configurable_pool_fd_;
static base::PlatformFile regular_pool_fd_;
static base::PlatformFile brp_pool_fd_;
static base::PlatformFile configurable_pool_fd_;
static uintptr_t pool_shadow_address_;
#endif // PA_CONFIG(ENABLE_SHADOW_METADATA)
@ -517,19 +490,11 @@ PA_ALWAYS_INLINE bool IsManagedByPartitionAlloc(uintptr_t address) {
PA_DCHECK(!internal::PartitionAddressSpace::IsInBRPPool(address));
#endif
return
#if PA_BUILDFLAG(GLUE_CORE_POOLS)
internal::PartitionAddressSpace::IsInCorePools(address)
#else
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
internal::PartitionAddressSpace::IsInBRPPool(address) ||
#endif
internal::PartitionAddressSpace::IsInRegularPool(address)
#endif // PA_BUILDFLAG(GLUE_CORE_POOLS)
return internal::PartitionAddressSpace::IsInCorePools(address)
#if PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
|| internal::PartitionAddressSpace::IsInThreadIsolatedPool(address)
|| internal::PartitionAddressSpace::IsInThreadIsolatedPool(address)
#endif
|| internal::PartitionAddressSpace::IsInConfigurablePool(address);
|| internal::PartitionAddressSpace::IsInConfigurablePool(address);
}
// Returns false for nullptr.
@ -542,13 +507,11 @@ PA_ALWAYS_INLINE bool IsManagedByPartitionAllocBRPPool(uintptr_t address) {
return internal::PartitionAddressSpace::IsInBRPPool(address);
}
#if PA_BUILDFLAG(GLUE_CORE_POOLS)
// Checks whether the address belongs to either regular or BRP pool.
// Returns false for nullptr.
PA_ALWAYS_INLINE bool IsManagedByPartitionAllocCorePools(uintptr_t address) {
return internal::PartitionAddressSpace::IsInCorePools(address);
}
#endif // PA_BUILDFLAG(GLUE_CORE_POOLS)
// Returns false for nullptr.
PA_ALWAYS_INLINE bool IsManagedByPartitionAllocConfigurablePool(

View file

@ -9,6 +9,18 @@
#include "partition_alloc/partition_alloc_base/compiler_specific.h"
// Indicate whether `operator<=>()` is supported by both language and library.
// This can be removed once the minimum C++ version is C++20.
#if __has_include(<version>)
#include <version>
#endif
#if defined(__cpp_lib_three_way_comparison) && \
__cpp_lib_three_way_comparison >= 201907L
#define PA_HAVE_SPACESHIP_OPERATOR 1
#else
#define PA_HAVE_SPACESHIP_OPERATOR 0
#endif
// PA_ATTRIBUTE_RETURNS_NONNULL
//
// Tells the compiler that a function never returns a null pointer.

View file

@ -20,11 +20,12 @@
// This header defines the CHECK, DCHECK, and DPCHECK macros.
//
// CHECK dies with a fatal error if its condition is not true. It is not
// controlled by NDEBUG, so the check will be executed regardless of compilation
// mode.
// controlled by PA_BUILDFLAG(IS_DEBUG), so the check will be executed
// regardless of compilation mode.
//
// DCHECK, the "debug mode" check, is enabled depending on NDEBUG and
// DCHECK_ALWAYS_ON, and its severity depends on DCHECK_IS_CONFIGURABLE.
// DCHECK, the "debug mode" check, is enabled depending on
// PA_BUILDFLAG(IS_DEBUG) and PA_BUILDFLAG(DCHECK_ALWAYS_ON), and its severity
// depends on PA_BUILDFLAG(DCHECK_IS_CONFIGURABLE).
//
// (D)PCHECK is like (D)CHECK, but includes the system error code (c.f.
// perror(3)).
@ -141,9 +142,9 @@ class PA_COMPONENT_EXPORT(PARTITION_ALLOC_BASE) NotImplemented
} // namespace check_error
#if defined(OFFICIAL_BUILD) && !defined(NDEBUG)
#if defined(OFFICIAL_BUILD) && PA_BUILDFLAG(IS_DEBUG)
#error "Debug builds are not expected to be optimized as official builds."
#endif // defined(OFFICIAL_BUILD) && !defined(NDEBUG)
#endif // defined(OFFICIAL_BUILD) && BUILDFLAG(IS_DEBUG)
#if defined(OFFICIAL_BUILD) && !PA_BUILDFLAG(DCHECKS_ARE_ON)

View file

@ -6,90 +6,168 @@
#define PARTITION_ALLOC_PARTITION_ALLOC_BASE_COMPILER_SPECIFIC_H_
#include "partition_alloc/build_config.h"
#include "partition_alloc/buildflags.h"
// A wrapper around `__has_cpp_attribute`.
// A wrapper around `__has_cpp_attribute()`, which is in C++20 and thus not yet
// available for all targets PA supports (since PA's minimum C++ version is 17).
// This works similarly to `PA_HAS_ATTRIBUTE()` below, in that where it's
// unavailable it will map to `0`.
#if defined(__has_cpp_attribute)
#define PA_HAS_CPP_ATTRIBUTE(x) __has_cpp_attribute(x)
#else
#define PA_HAS_CPP_ATTRIBUTE(x) 0
#endif
// A wrapper around `__has_attribute`, similar to PA_HAS_CPP_ATTRIBUTE.
// A wrapper around `__has_attribute()`, which is similar to the C++20-standard
// `__has_cpp_attribute()`, but tests for support for `__attribute__(())`s.
// Compilers that do not support this (e.g. MSVC) are also assumed not to
// support `__attribute__`, so this is simply mapped to `0` there.
//
// See also:
// https://clang.llvm.org/docs/LanguageExtensions.html#has-attribute
#if defined(__has_attribute)
#define PA_HAS_ATTRIBUTE(x) __has_attribute(x)
#else
#define PA_HAS_ATTRIBUTE(x) 0
#endif
// A wrapper around `__has_builtin`, similar to PA_HAS_CPP_ATTRIBUTE.
// A wrapper around `__has_builtin`, similar to `PA_HAS_ATTRIBUTE()`.
//
// See also:
// https://clang.llvm.org/docs/LanguageExtensions.html#has-builtin
#if defined(__has_builtin)
#define PA_HAS_BUILTIN(x) __has_builtin(x)
#else
#define PA_HAS_BUILTIN(x) 0
#endif
// Annotate a function indicating it should not be inlined.
// Use like:
// NOINLINE void DoStuff() { ... }
#if defined(__clang__) && PA_HAS_ATTRIBUTE(noinline)
#define PA_NOINLINE [[clang::noinline]]
#elif PA_BUILDFLAG(PA_COMPILER_GCC) && PA_HAS_ATTRIBUTE(noinline)
#define PA_NOINLINE __attribute__((noinline))
#elif PA_BUILDFLAG(PA_COMPILER_MSVC)
#define PA_NOINLINE __declspec(noinline)
// A wrapper around `__has_feature`, similar to `PA_HAS_ATTRIBUTE()`.
//
// See also:
// https://clang.llvm.org/docs/LanguageExtensions.html#has-feature-and-has-extension
#if defined(__has_feature)
#define PA_HAS_FEATURE(FEATURE) __has_feature(FEATURE)
#else
#define PA_HAS_FEATURE(FEATURE) 0
#endif
// Annotates a function indicating it should not be inlined.
//
// Note that this may still fail to preserve function calls in the most trivial
// cases, due to optimizations like constant folding; see
// https://stackoverflow.com/questions/54481855/clang-ignoring-attribute-noinline/54482070#54482070.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#noinline
//
// Usage:
// ```
// PA_NOINLINE void Func() {
// // This body will not be inlined into callers.
// }
// ```
#if PA_HAS_CPP_ATTRIBUTE(gnu::noinline)
#define PA_NOINLINE [[gnu::noinline]]
#elif PA_HAS_CPP_ATTRIBUTE(msvc::noinline)
#define PA_NOINLINE [[msvc::noinline]]
#else
#define PA_NOINLINE
#endif
#if defined(__clang__) && defined(NDEBUG) && PA_HAS_ATTRIBUTE(always_inline)
// Annotates a function indicating it should always be inlined.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#always-inline-force-inline
//
// Usage:
// ```
// PA_ALWAYS_INLINE void Func() {
// // This body will be inlined into callers whenever possible.
// }
// ```
//
// Since `ALWAYS_INLINE` is performance-oriented but can hamper debugging,
// ignore it in debug mode.
#if !PA_BUILDFLAG(IS_DEBUG)
#if PA_HAS_CPP_ATTRIBUTE(clang::always_inline)
#define PA_ALWAYS_INLINE [[clang::always_inline]] inline
#elif PA_BUILDFLAG(PA_COMPILER_GCC) && defined(NDEBUG) && \
PA_HAS_ATTRIBUTE(always_inline)
#define PA_ALWAYS_INLINE inline __attribute__((__always_inline__))
#elif PA_BUILDFLAG(PA_COMPILER_MSVC) && defined(NDEBUG)
#elif PA_HAS_CPP_ATTRIBUTE(gnu::always_inline)
#define PA_ALWAYS_INLINE [[gnu::always_inline]] inline
#elif defined(PA_COMPILER_MSVC)
#define PA_ALWAYS_INLINE __forceinline
#else
#endif
#endif // !PA_BUILDFLAG(IS_DEBUG)
#if !defined(PA_ALWAYS_INLINE)
#define PA_ALWAYS_INLINE inline
#endif
// Annotate a function indicating it should never be tail called. Useful to make
// sure callers of the annotated function are never omitted from call-stacks.
// To provide the complementary behavior (prevent the annotated function from
// being omitted) look at NOINLINE. Also note that this doesn't prevent code
// folding of multiple identical caller functions into a single signature. To
// prevent code folding, see NO_CODE_FOLDING() in base/debug/alias.h.
// Use like:
// void NOT_TAIL_CALLED FooBar();
#if defined(__clang__) && PA_HAS_ATTRIBUTE(not_tail_called)
// Annotates a function indicating it should never be tail called. Useful to
// make sure callers of the annotated function are never omitted from call
// stacks. Often useful with `PA_NOINLINE` to make sure the function itself is
// also not omitted from call stacks. Note: this does not prevent code folding
// of multiple identical callers into a single signature; to do that, see
// `PA_NO_CODE_FOLDING()` in partition_alloc_base/debug/alias.h.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#not-tail-called
//
// Usage:
// ```
// // Calls to this method will not be tail calls.
// PA_NOT_TAIL_CALLED void Func();
// ```
#if PA_HAS_CPP_ATTRIBUTE(clang::not_tail_called)
#define PA_NOT_TAIL_CALLED [[clang::not_tail_called]]
#else
#define PA_NOT_TAIL_CALLED
#endif
// Annotate a function indicating it must be tail called.
// Can be used only on return statements, even for functions returning void.
// Caller and callee must have the same number of arguments and its types must
// be "similar".
#if defined(__clang__) && PA_HAS_ATTRIBUTE(musttail)
// Annotates a return statement indicating the compiler must convert it to a
// tail call. Can be used only on return statements, even for functions
// returning void. Caller and callee must have the same number of arguments and
// the argument types must be "similar". While the compiler may automatically
// convert compatible calls to tail calls when optimizing, this annotation
// requires it to occur if doing so is valid, and will not compile otherwise.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#musttail
//
// Usage:
// ```
// int Func1(double);
// int Func2(double d) {
// PA_MUSTTAIL return Func1(d + 1); // `Func1()` will be tail-called.
// }
// ```
#if PA_HAS_CPP_ATTRIBUTE(clang::musttail) && !defined(__MIPSEL__)
#define PA_MUSTTAIL [[clang::musttail]]
#else
#define PA_MUSTTAIL
#endif
// In case the compiler supports it PA_NO_UNIQUE_ADDRESS evaluates to the C++20
// attribute [[no_unique_address]]. This allows annotating data members so that
// they need not have an address distinct from all other non-static data members
// of its class.
// Annotates a data member indicating it need not have an address distinct from
// all other non-static data members of the class, and its tail padding may be
// used for other objects' storage. This can have subtle and dangerous effects,
// including on containing objects; use with caution.
//
// See also:
// https://en.cppreference.com/w/cpp/language/attributes/no_unique_address
// https://wg21.link/dcl.attr.nouniqueaddr
// Usage:
// ```
// // In the following struct, `t` might not have a unique address from `i`,
// // and `t`'s tail padding (if any) may be reused by subsequent objects.
// struct S {
// int i;
// PA_NO_UNIQUE_ADDRESS T t;
// };
// ```
//
// References:
// * https://en.cppreference.com/w/cpp/language/attributes/no_unique_address
// * https://wg21.link/dcl.attr.nouniqueaddr
#if PA_BUILDFLAG(PA_COMPILER_MSVC) && \
PA_HAS_CPP_ATTRIBUTE(msvc::no_unique_address)
// Unfortunately MSVC ignores [[no_unique_address]] (see
// https://devblogs.microsoft.com/cppblog/msvc-cpp20-and-the-std-cpp20-switch/#msvc-extensions-and-abi),
// and clang-cl matches it for ABI compatibility reasons. We need to prefer
// [[msvc::no_unique_address]] when available if we actually want any effect.
#if PA_HAS_CPP_ATTRIBUTE(msvc::no_unique_address)
#define PA_NO_UNIQUE_ADDRESS [[msvc::no_unique_address]]
#elif PA_HAS_CPP_ATTRIBUTE(no_unique_address)
#define PA_NO_UNIQUE_ADDRESS [[no_unique_address]]
@ -97,176 +175,305 @@
#define PA_NO_UNIQUE_ADDRESS
#endif
// Tells the compiler a function is using a printf-style format string.
// |format_param| is the one-based index of the format string parameter;
// |dots_param| is the one-based index of the "..." parameter.
// For v*printf functions (which take a va_list), pass 0 for dots_param.
// (This is undocumented but matches what the system C headers do.)
// For member functions, the implicit this parameter counts as index 1.
#if (PA_BUILDFLAG(PA_COMPILER_GCC) || defined(__clang__)) && \
PA_HAS_ATTRIBUTE(format)
// Annotates a function indicating it takes a `printf()`-style format string.
// The compiler will check that the provided arguments match the type specifiers
// in the format string. Useful to detect mismatched format strings/args.
//
// `format_param` is the one-based index of the format string parameter;
// `dots_param` is the one-based index of the "..." parameter.
// For `v*printf()` functions (which take a `va_list`), `dots_param` should be
// 0. For member functions, the implicit `this` parameter is at index 1.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#format
// https://gcc.gnu.org/onlinedocs/gcc/Common-Function-Attributes.html#index-format-function-attribute
//
// Usage:
// ```
// PA_PRINTF_FORMAT(1, 2)
// void Print(const char* format, ...);
// void Func() {
// // The following call will not compile; diagnosed as format and argument
// // types mismatching.
// Print("%s", 1);
// }
// ```
#if PA_HAS_CPP_ATTRIBUTE(gnu::format)
#define PA_PRINTF_FORMAT(format_param, dots_param) \
__attribute__((format(printf, format_param, dots_param)))
[[gnu::format(printf, format_param, dots_param)]]
#else
#define PA_PRINTF_FORMAT(format_param, dots_param)
#endif
// Sanitizers annotations.
#if PA_HAS_ATTRIBUTE(no_sanitize)
#define PA_NO_SANITIZE(what) __attribute__((no_sanitize(what)))
#endif
#if !defined(PA_NO_SANITIZE)
#define PA_NO_SANITIZE(what)
// Annotates a function disabling the named sanitizer within its body.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#no-sanitize
// https://clang.llvm.org/docs/UsersManual.html#controlling-code-generation
//
// Usage:
// ```
// PA_NO_SANITIZE("cfi-icall") void Func() {
// // CFI indirect call checks will not be performed in this body.
// }
// ```
#if PA_HAS_CPP_ATTRIBUTE(clang::no_sanitize)
#define PA_NO_SANITIZE(sanitizer) [[clang::no_sanitize(sanitizer)]]
#else
#define PA_NO_SANITIZE(sanitizer)
#endif
// MemorySanitizer annotations.
// Annotates a pointer and size directing MSAN to treat that memory region as
// fully initialized. Useful for e.g. code that deliberately reads uninitialized
// data, such as a GC scavenging root set pointers from the stack.
//
// See also:
// https://github.com/google/sanitizers/wiki/MemorySanitizer
//
// Usage:
// ```
// T* ptr = ...;
// // After the next statement, MSAN will assume `ptr` points to an
// // initialized `T`.
// PA_MSAN_UNPOISON(ptr, sizeof(T));
// ```
#if defined(MEMORY_SANITIZER)
#include <sanitizer/msan_interface.h>
// Mark a memory region fully initialized.
// Use this to annotate code that deliberately reads uninitialized data, for
// example a GC scavenging root set pointers from the stack.
#define PA_MSAN_UNPOISON(p, size) __msan_unpoison(p, size)
#else // MEMORY_SANITIZER
#define PA_MSAN_UNPOISON(p, size)
#endif // MEMORY_SANITIZER
// Compiler feature-detection.
// clang.llvm.org/docs/LanguageExtensions.html#has-feature-and-has-extension
#if defined(__has_feature)
#define PA_HAS_FEATURE(FEATURE) __has_feature(FEATURE)
#else
#define PA_HAS_FEATURE(FEATURE) 0
#define PA_MSAN_UNPOISON(p, size)
#endif
// The ANALYZER_ASSUME_TRUE(bool arg) macro adds compiler-specific hints
// to Clang which control what code paths are statically analyzed,
// and is meant to be used in conjunction with assert & assert-like functions.
// The expression is passed straight through if analysis isn't enabled.
// Annotates a codepath suppressing static analysis along that path. Useful when
// code is safe in practice for reasons the analyzer can't detect, e.g. because
// the condition leading to that path guarantees a param is non-null.
//
// ANALYZER_SKIP_THIS_PATH() suppresses static analysis for the current
// codepath and any other branching codepaths that might follow.
// Usage:
// ```
// if (cond) {
// PA_ANALYZER_SKIP_THIS_PATH();
// // Static analysis will be disabled for the remainder of this block.
// delete ptr;
// }
// ```
#if defined(__clang_analyzer__)
namespace partition_alloc::internal {
inline constexpr bool AnalyzerNoReturn() __attribute__((analyzer_noreturn)) {
inline constexpr bool AnalyzerNoReturn()
#if PA_HAS_ATTRIBUTE(analyzer_noreturn)
__attribute__((analyzer_noreturn))
#endif
{
return false;
}
inline constexpr bool AnalyzerAssumeTrue(bool arg) {
// PartitionAllocAnalyzerNoReturn() is invoked and analysis is terminated if
// |arg| is false.
return arg || AnalyzerNoReturn();
}
} // namespace partition_alloc::internal
#define PA_ANALYZER_ASSUME_TRUE(arg) \
::partition_alloc::internal::AnalyzerAssumeTrue(!!(arg))
#define PA_ANALYZER_SKIP_THIS_PATH() \
static_cast<void>(::partition_alloc::internal::AnalyzerNoReturn())
#else // !defined(__clang_analyzer__)
#define PA_ANALYZER_ASSUME_TRUE(arg) (arg)
#else
// The above definition would be safe even outside the analyzer, but defining
// the macro away entirely avoids the need for the optimizer to eliminate it.
#define PA_ANALYZER_SKIP_THIS_PATH()
#endif
#endif // defined(__clang_analyzer__)
// Annotates a condition directing static analysis to assume it is always true.
// Evaluates to the provided `arg` as a `bool`.
//
// Usage:
// ```
// // Static analysis will assume the following condition always holds.
// if (PA_ANALYZER_ASSUME_TRUE(cond)) ...
// ```
#if defined(__clang_analyzer__)
namespace partition_alloc::internal {
inline constexpr bool AnalyzerAssumeTrue(bool arg) {
return arg || AnalyzerNoReturn();
}
} // namespace partition_alloc::internal
#define PA_ANALYZER_ASSUME_TRUE(arg) \
::partition_alloc::internal::AnalyzerAssumeTrue(!!(arg))
#else
// Again, the above definition is safe, this is just simpler for the optimizer.
#define PA_ANALYZER_ASSUME_TRUE(arg) (arg)
#endif
// Use nomerge attribute to disable optimization of merging multiple same calls.
#if defined(__clang__) && PA_HAS_ATTRIBUTE(nomerge)
// Annotates a function, function pointer, or statement to disallow
// optimizations that merge calls. Useful to ensure the source locations of such
// calls are not obscured.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#nomerge
//
// Usage:
// ```
// PA_NOMERGE void Func(); // No direct calls to `Func()` will be merged.
//
// using Ptr = decltype(&Func);
// PA_NOMERGE Ptr ptr = &Func; // No calls through `ptr` will be merged.
//
// PA_NOMERGE if (cond) {
// // No calls in this block will be merged.
// }
// ```
#if PA_HAS_CPP_ATTRIBUTE(clang::nomerge)
#define PA_NOMERGE [[clang::nomerge]]
#else
#define PA_NOMERGE
#endif
// Marks a type as being eligible for the "trivial" ABI despite having a
// non-trivial destructor or copy/move constructor. Such types can be relocated
// after construction by simply copying their memory, which makes them eligible
// to be passed in registers. The canonical example is std::unique_ptr.
// Annotates a type as being suitable for passing in registers despite having a
// non-trivial copy or move constructor or destructor. This requires the type
// not be concerned about its address remaining constant, be safely usable after
// copying its memory, and have a destructor that may be safely omitted on
// moved-from instances; an example is `std::unique_ptr`. Unnecessary if the
// copy/move constructor(s) and destructor are unconditionally trivial; likely
// ineffective if the type is too large to be passed in one or two registers
// with the target ABI. However, annotating a type this way will also cause
// `IS_TRIVIALLY_RELOCATABLE()` to return true for that type, and so may be
// desirable even for large types, if they are placed in containers that
// optimize based on that check.
//
// Use with caution; this has some subtle effects on constructor/destructor
// ordering and will be very incorrect if the type relies on its address
// remaining constant. When used as a function argument (by value), the value
// may be constructed in the caller's stack frame, passed in a register, and
// then used and destructed in the callee's stack frame. A similar thing can
// occur when values are returned.
//
// TRIVIAL_ABI is not needed for types which have a trivial destructor and
// copy/move constructors, such as base::TimeTicks and other POD.
//
// It is also not likely to be effective on types too large to be passed in one
// or two registers on typical target ABIs.
// NOTE: Use with caution; this has subtle effects on constructor/destructor
// ordering. When used with types passed or returned by value, values may be
// constructed in the source stack frame, passed in a register, and then used
// and destroyed in the target stack frame.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#trivial-abi
// https://libcxx.llvm.org/docs/DesignDocs/UniquePtrTrivialAbi.html
#if defined(__clang__) && PA_HAS_ATTRIBUTE(trivial_abi)
//
// Usage:
// ```
// // Instances of type `S` will be eligible to be passed in registers despite
// // `S`'s nontrivial destructor.
// struct PA_TRIVIAL_ABI S { ~S(); }
// ```
#if PA_HAS_CPP_ATTRIBUTE(clang::trivial_abi)
#define PA_TRIVIAL_ABI [[clang::trivial_abi]]
#else
#define PA_TRIVIAL_ABI
#endif
// Requires constant initialization. See constinit in C++20. Allows to rely on a
// variable being initialized before execution, and not requiring a global
// constructor.
#if PA_HAS_ATTRIBUTE(require_constant_initialization)
#define PA_CONSTINIT __attribute__((require_constant_initialization))
#endif
#if !defined(PA_CONSTINIT)
// Makes C++20's `constinit` functionality available even pre-C++20, by falling
// back to a custom attribute.
// TODO(crbug.com/365046216): Use `constinit` directly when C++20 is available
// and all usage sites have been reordered to be compatible with doing so.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#require-constant-initialization-constinit-c-20
//
// Usage:
// ```
// struct S {
// constexpr S() = default;
// S(int) {}
// };
//
// // Compiles (constant initialization via `constexpr` default constructor).
// PA_CONSTINIT S s0;
//
// // Will not compile; diagnosed as usage of non-constexpr constructor in a
// // constant expression.
// PA_CONSTINIT S s1(1);
//
// // Compiles (non-constant initialization via non-`constexpr` constructor).
// S s2(2);
// ```
#if PA_HAS_CPP_ATTRIBUTE(clang::require_constant_initialization)
#define PA_CONSTINIT [[clang::require_constant_initialization]]
#else
#define PA_CONSTINIT
#endif
#if defined(__clang__)
// Annotates a type as holding a pointer into an owner object (an appropriate
// STL or `[[gsl::Owner]]`-annotated type). If an instance of the pointer type
// is constructed from an instance of the owner type, and the owner instance is
// destroyed, the pointer instance is considered to be dangling. Useful to
// diagnose some cases of lifetime errors.
//
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#pointer
//
// Usage:
// ```
// struct [[gsl::Owner]] T {};
// struct PA_GSL_POINTER S {
// S(const T&);
// };
// S Func() {
// // The following return will not compile; diagnosed as returning address
// // of local temporary.
// return S(T());
// }
// ```
#if PA_HAS_CPP_ATTRIBUTE(gsl::Pointer)
#define PA_GSL_POINTER [[gsl::Pointer]]
#else
#define PA_GSL_POINTER
#endif
// Constexpr destructors were introduced in C++20. PartitionAlloc's minimum
// supported C++ version is C++17.
// Annotates a destructor marking it `constexpr` only if the language supports
// it (C++20 and onward).
//
// Usage:
// ```
// struct S {
// PA_CONSTEXPR_DTOR ~S() {} // N.B.: Compiles even pre-C++20
// };
// // The following declaration will only compile in C++20; diagnosed as an
// // invalid constexpr variable of non-literal type otherwise.
// constexpr S s;
// ```
#if defined(__cpp_constexpr) && __cpp_constexpr >= 201907L
#define PA_CONSTEXPR_DTOR constexpr
#else
#define PA_CONSTEXPR_DTOR
#endif
// PA_LIFETIME_BOUND indicates that a resource owned by a function parameter or
// implicit object parameter is retained by the return value of the annotated
// function (or, for a parameter of a constructor, in the value of the
// constructed object). This attribute causes warnings to be produced if a
// temporary object does not live long enough.
// Annotates a pointer or reference parameter or return value for a member
// function as having lifetime intertwined with the instance on which the
// function is called. For parameters, the function is assumed to store the
// value into the called-on object, so if the referred-to object is later
// destroyed, the called-on object is also considered to be dangling. For return
// values, the value is assumed to point into the called-on object, so if that
// object is destroyed, the returned value is also considered to be dangling.
// Useful to diagnose some cases of lifetime errors.
//
// When applied to a reference parameter, the referenced object is assumed to be
// retained by the return value of the function. When applied to a non-reference
// parameter (for example, a pointer or a class type), all temporaries
// referenced by the parameter are assumed to be retained by the return value of
// the function.
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#lifetimebound
//
// See also the upstream documentation:
// https://clang.llvm.org/docs/AttributeReference.html#lifetimebound
//
// This attribute is based on `ABSL_ATTRIBUTE_LIFETIME_BOUND`, but:
// * A separate definition is provided to avoid PartitionAlloc => Abseil
// dependency
// * The definition is tweaked to avoid `__attribute__(lifetime))` because it
// can't be applied in the same places as `[[clang::lifetimebound]]`. In
// particular `operator T*&() && __attribute__(lifetime))` fails to compile on
// `clang` with the following error: 'lifetimebound' attribute only applies to
// parameters and implicit object parameters
// Usage:
// ```
// struct S {
// S(int* p PA_LIFETIME_BOUND);
// int* Get() PA_LIFETIME_BOUND;
// };
// S Func1() {
// int i = 0;
// // The following return will not compile; diagnosed as returning address
// // of a stack object.
// return S(&i);
// }
// int* Func2(int* p) {
// // The following return will not compile; diagnosed as returning address
// // of a local temporary.
// return S(p).Get();
// }
// ```
#if PA_HAS_CPP_ATTRIBUTE(clang::lifetimebound)
#define PA_LIFETIME_BOUND [[clang::lifetimebound]]
#else
#define PA_LIFETIME_BOUND
#endif
// Clang instrumentation may allocate, leading to reentrancy in the allocator,
// and crashes when generating a PGO profile. This attribute disables profiling
// for a function.
// Annotates a function disabling PGO profiling. This may be necessary to avoid
// runtime crashes due to re-entrancy when allocator functions are instrumented
// for PGO profiling and the instrumentation attempts to allocate.
//
// See
// https://clang.llvm.org/docs/AttributeReference.html#no-profile-instrument-function
// See also:
// https://clang.llvm.org/docs/AttributeReference.html#no-profile-instrument-function
//
// Usage:
// ```
// ```
#if PA_HAS_CPP_ATTRIBUTE(gnu::no_profile_instrument_function)
#define PA_NOPROFILE [[gnu::no_profile_instrument_function]]
#else

View file

@ -97,7 +97,7 @@ uint64_t xgetbv(uint32_t xcr) {
void CPU::Initialize() {
#if PA_BUILDFLAG(PA_ARCH_CPU_X86_FAMILY)
int cpu_info[4] = {-1};
int cpu_info[4] = {-1, 0, 0, 0};
// __cpuid with an InfoType argument of 0 returns the number of
// valid Ids in CPUInfo[0] and the CPU identification string in
@ -112,7 +112,7 @@ void CPU::Initialize() {
// Interpret CPU feature information.
if (num_ids > 0) {
int cpu_info7[4] = {0};
int cpu_info7[4] = {};
__cpuid(cpu_info, 1);
if (num_ids >= 7) {
__cpuid(cpu_info7, 7);

View file

@ -35,7 +35,7 @@ namespace partition_alloc::internal::base::debug {
// strncpy(name_copy, p->name, sizeof(name_copy)-1);
// name_copy[sizeof(name_copy)-1] = '\0';;
// base::debug::alias(name_copy);
// CHECK(false);
// NOTREACHED();
//
// Case #2: Prevent a tail call into a function. This is useful to make sure the
// function containing the call to base::debug::Alias() will be present in the

View file

@ -0,0 +1,39 @@
// Copyright 2017 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef PARTITION_ALLOC_PARTITION_ALLOC_BASE_FILES_PLATFORM_FILE_H_
#define PARTITION_ALLOC_PARTITION_ALLOC_BASE_FILES_PLATFORM_FILE_H_
#include "partition_alloc/build_config.h"
#if PA_BUILDFLAG(IS_WIN)
#include "partition_alloc/partition_alloc_base/win/windows_types.h"
#endif
// This file defines platform-independent types for dealing with
// platform-dependent files. If possible, use the higher-level base::File class
// rather than these primitives.
namespace partition_alloc::internal::base {
#if PA_BUILDFLAG(IS_WIN)
using PlatformFile = HANDLE;
// It would be nice to make this constexpr but INVALID_HANDLE_VALUE is a
// ((void*)(-1)) which Clang rejects since reinterpret_cast is technically
// disallowed in constexpr. Visual Studio accepts this, however.
const PlatformFile kInvalidPlatformFile = INVALID_HANDLE_VALUE;
#elif PA_BUILDFLAG(IS_POSIX) || PA_BUILDFLAG(IS_FUCHSIA)
using PlatformFile = int;
inline constexpr PlatformFile kInvalidPlatformFile = -1;
#endif
} // namespace partition_alloc::internal::base
#endif // PARTITION_ALLOC_PARTITION_ALLOC_BASE_FILES_PLATFORM_FILE_H_

View file

@ -9,6 +9,8 @@
#include <limits>
#include <type_traits>
#include "partition_alloc/buildflags.h"
namespace partition_alloc::internal::base::internal {
// The std library doesn't provide a binary max_exponent for integers, however
@ -83,13 +85,13 @@ constexpr typename std::make_unsigned<T>::type SafeUnsignedAbs(T value) {
// TODO(jschuh): Debug builds don't reliably propagate constants, so we restrict
// some accelerated runtime paths to release builds until this can be forced
// with consteval support in C++20 or C++23.
#if defined(NDEBUG)
constexpr bool kEnableAsmCode = true;
#if PA_BUILDFLAG(IS_DEBUG)
inline constexpr bool kEnableAsmCode = false;
#else
constexpr bool kEnableAsmCode = false;
inline constexpr bool kEnableAsmCode = true;
#endif
// Forces a crash, like a CHECK(false). Used for numeric boundary errors.
// Forces a crash, like a NOTREACHED(). Used for numeric boundary errors.
// Also used in a constexpr template to trigger a compilation failure on
// an error condition.
struct CheckOnFailure {

View file

@ -18,6 +18,7 @@
#define PARTITION_ALLOC_PARTITION_ALLOC_BASE_POSIX_EINTR_WRAPPER_H_
#include "partition_alloc/build_config.h"
#include "partition_alloc/buildflags.h"
#if PA_BUILDFLAG(IS_POSIX)
#include <cerrno>
@ -31,7 +32,7 @@ template <typename Fn>
inline auto WrapEINTR(Fn fn) {
return [fn](auto&&... args) {
int out = -1;
#if defined(NDEBUG)
#if !PA_BUILDFLAG(IS_DEBUG)
while (true)
#else
for (int retry_count = 0; retry_count < 100; ++retry_count)

View file

@ -10,8 +10,9 @@
#include <limits>
#include "partition_alloc/build_config.h"
#include "partition_alloc/buildflags.h"
#if !defined(NDEBUG)
#if PA_BUILDFLAG(IS_DEBUG)
// In debug builds, we use RAW_CHECK() to print useful error messages, if
// SafeSPrintf() is called with broken arguments.
// As our contract promises that SafeSPrintf() can be called from any
@ -41,7 +42,7 @@
if (x) { \
} \
} while (0)
#endif
#endif // PA_BUILDFLAG(IS_DEBUG)
namespace partition_alloc::internal::base::strings {
@ -74,7 +75,7 @@ const char kUpCaseHexDigits[] = "0123456789ABCDEF";
const char kDownCaseHexDigits[] = "0123456789abcdef";
} // namespace
#if defined(NDEBUG)
#if !PA_BUILDFLAG(IS_DEBUG)
// We would like to define kSSizeMax as std::numeric_limits<ssize_t>::max(),
// but C++ doesn't allow us to do that for constants. Instead, we have to
// use careful casting and shifting. We later use a static_assert to
@ -82,7 +83,7 @@ const char kDownCaseHexDigits[] = "0123456789abcdef";
namespace {
const size_t kSSizeMax = kSSizeMaxConst;
}
#else // defined(NDEBUG)
#else // !PA_BUILDFLAG(IS_DEBUG)
// For efficiency, we really need kSSizeMax to be a constant. But for unit
// tests, it should be adjustable. This allows us to verify edge cases without
// having to fill the entire available address space. As a compromise, we make
@ -101,7 +102,7 @@ size_t GetSafeSPrintfSSizeMaxForTest() {
return kSSizeMax;
}
} // namespace internal
#endif // defined(NDEBUG)
#endif // !PA_BUILDFLAG(IS_DEBUG)
namespace {
class Buffer {
@ -111,10 +112,7 @@ class Buffer {
// to ensure that the buffer is at least one byte in size, so that it fits
// the trailing NUL that will be added by the destructor. The buffer also
// must be smaller or equal to kSSizeMax in size.
Buffer(char* buffer, size_t size)
: buffer_(buffer),
size_(size - 1), // Account for trailing NUL byte
count_(0) {
Buffer(char* buffer, size_t size) : buffer_(buffer), size_(size - 1) {
// MSVS2013's standard library doesn't mark max() as constexpr yet. cl.exe
// supports static_cast but doesn't really implement constexpr yet so it doesn't
// complain, but clang does.
@ -276,7 +274,7 @@ class Buffer {
// Number of bytes that would have been emitted to the buffer, if the buffer
// was sufficiently big. This number always excludes the trailing NUL byte
// and it is guaranteed to never grow bigger than kSSizeMax-1.
size_t count_;
size_t count_ = 0;
};
bool Buffer::IToASCII(bool sign,

View file

@ -20,6 +20,7 @@
#if PA_BUILDFLAG(IS_LINUX) || PA_BUILDFLAG(IS_CHROMEOS)
#include <sys/syscall.h>
#include <atomic>
#endif
@ -27,6 +28,10 @@
#include <zircon/process.h>
#endif
#if defined(__MUSL__)
#include "partition_alloc/shim/allocator_shim.h"
#endif
namespace partition_alloc::internal::base {
#if PA_BUILDFLAG(IS_LINUX) || PA_BUILDFLAG(IS_CHROMEOS)
@ -58,7 +63,22 @@ thread_local bool g_is_main_thread = true;
class InitAtFork {
public:
InitAtFork() {
#if defined(__MUSL__)
allocator_shim::AllocatorDispatch d =
*allocator_shim::GetAllocatorDispatchChainHeadForTesting();
d.alloc_function = +[](size_t size, void*) -> void* {
// The size of the scratch fits struct atfork_funcs in Musl pthread_atfork.c.
static char scratch[5 * sizeof(void*)];
return size != sizeof(scratch) ? nullptr : scratch;
};
allocator_shim::InsertAllocatorDispatch(&d);
#endif
pthread_atfork(nullptr, nullptr, internal::InvalidateTidCache);
#if defined(__MUSL__)
allocator_shim::RemoveAllocatorDispatchForTesting(&d);
#endif
}
};

View file

@ -132,7 +132,6 @@ bool CreateThreadInternal(size_t stack_size,
case ERROR_COMMITMENT_LIMIT:
case ERROR_COMMITMENT_MINIMUM:
TerminateBecauseOutOfMemory(stack_size);
break;
default:
break;

View file

@ -248,7 +248,7 @@ TimeTicks TimeTicks::Now() {
// static
TimeTicks TimeTicks::UnixEpoch() {
static const TimeTicks epoch([]() {
static const TimeTicks epoch([] {
return subtle::TimeTicksNowIgnoringOverride() -
(subtle::TimeNowIgnoringOverride() - Time::UnixEpoch());
}());

View file

@ -31,7 +31,7 @@ namespace {
// Returns a pointer to the initialized Mach timebase info struct.
mach_timebase_info_data_t* MachTimebaseInfo() {
static mach_timebase_info_data_t timebase_info = []() {
static mach_timebase_info_data_t timebase_info = [] {
mach_timebase_info_data_t info;
kern_return_t kr = mach_timebase_info(&info);
PA_BASE_DCHECK(kr == KERN_SUCCESS) << "mach_timebase_info";

View file

@ -7,8 +7,9 @@
// A good article: http://www.ddj.com/windows/184416651
// A good mozilla bug: http://bugzilla.mozilla.org/show_bug.cgi?id=363258
//
// The default windows timer, GetSystemTimeAsFileTime is not very precise.
// It is only good to ~15.5ms.
// The default windows timer, GetSystemTimePreciseAsFileTime is quite precise.
// However it is not always fast on some hardware and is slower than the
// performance counters.
//
// QueryPerformanceCounter is the logical choice for a high-precision timer.
// However, it is known to be buggy on some hardware. Specifically, it can
@ -77,7 +78,7 @@ FILETIME MicrosecondsToFileTime(int64_t us) {
int64_t CurrentWallclockMicroseconds() {
FILETIME ft;
::GetSystemTimeAsFileTime(&ft);
::GetSystemTimePreciseAsFileTime(&ft);
return FileTimeToMicroseconds(ft);
}
@ -113,8 +114,8 @@ Time TimeNowIgnoringOverride() {
}
// We implement time using the high-resolution timers so that we can get
// timeouts which are smaller than 10-15ms. If we just used
// CurrentWallclockMicroseconds(), we'd have the less-granular timer.
// timeouts which likely are smaller than those if we just used
// CurrentWallclockMicroseconds().
//
// To make this work, we initialize the clock (g_initial_time) and the
// counter (initial_ctr). To compute the initial time, we can check

View file

@ -0,0 +1,19 @@
// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef PARTITION_ALLOC_PARTITION_ALLOC_BASE_TYPES_SAME_AS_ANY_H_
#define PARTITION_ALLOC_PARTITION_ALLOC_BASE_TYPES_SAME_AS_ANY_H_
#include <type_traits>
namespace partition_alloc::internal::base {
// True when `T` is any of the subsequent types.
// TODO(crbug.com/344963951): Switch to a concept when C++20 is allowed.
template <typename T, typename... Ts>
inline constexpr bool kSameAsAny = (std::is_same_v<T, Ts> || ...);
} // namespace partition_alloc::internal::base
#endif // PARTITION_ALLOC_PARTITION_ALLOC_BASE_TYPES_SAME_AS_ANY_H_

View file

@ -10,6 +10,7 @@
// Needed for function prototypes.
#include <specstrings.h>
#include <cstdint>
#ifdef __cplusplus
@ -41,6 +42,11 @@ typedef DWORD ULONG;
typedef unsigned short WORD;
typedef WORD UWORD;
typedef WORD ATOM;
#if defined(_WIN64)
typedef int64_t PA_LONG_PTR, *PA_PLONG_PTR;
#else
typedef int32_t PA_LONG_PTR, *PA_PLONG_PTR;
#endif
// Forward declare some Windows struct/typedef sets.
@ -53,6 +59,16 @@ struct PA_CHROME_SRWLOCK {
PVOID Ptr;
};
// Define some commonly used Windows constants. Note that the layout of these
// macros - including internal spacing - must be 100% consistent with windows.h.
// clang-format off
#ifndef INVALID_HANDLE_VALUE
// Work around there being two slightly different definitions in the SDK.
#define INVALID_HANDLE_VALUE ((HANDLE)(PA_LONG_PTR)-1)
#endif
// The trailing white-spaces after this macro are required, for compatibility
// with the definition in winnt.h.
// clang-format off

View file

@ -61,11 +61,11 @@
// Expensive dchecks that run within *Scan. These checks are only enabled in
// debug builds with dchecks enabled.
#if !defined(NDEBUG)
#if PA_BUILDFLAG(IS_DEBUG)
#define PA_SCAN_DCHECK_IS_ON() PA_BUILDFLAG(DCHECKS_ARE_ON)
#else
#define PA_SCAN_DCHECK_IS_ON() 0
#endif
#endif // PA_BUILDFLAG(IS_DEBUG)
#if PA_SCAN_DCHECK_IS_ON()
#define PA_SCAN_DCHECK(expr) PA_DCHECK(expr)

View file

@ -95,7 +95,9 @@ static_assert(sizeof(void*) == 8);
#endif
// Specifies whether allocation extras need to be added.
#if PA_BUILDFLAG(DCHECKS_ARE_ON) || PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
#if PA_BUILDFLAG(DCHECKS_ARE_ON) || \
PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT) || \
PA_BUILDFLAG(USE_PARTITION_COOKIE)
#define PA_CONFIG_EXTRAS_REQUIRED() 1
#else
#define PA_CONFIG_EXTRAS_REQUIRED() 0

View file

@ -63,9 +63,7 @@ enum class FreeFlags {
kNoHooks = 1 << 1, // Internal.
// Quarantine for a while to ensure no UaF from on-stack pointers.
kSchedulerLoopQuarantine = 1 << 2,
// Zap the object region on `Free()`.
kZap = 1 << 3,
kMaxValue = kZap,
kMaxValue = kSchedulerLoopQuarantine,
};
PA_DEFINE_OPERATORS_FOR_FLAGS(FreeFlags);
} // namespace internal
@ -467,7 +465,7 @@ constexpr size_t kBitsPerSizeT = sizeof(void*) * CHAR_BIT;
// the place used by a previous one will lead the previous SlotSpan to be
// decommitted immediately, provided that it is still empty.
//
// Setting this value higher means giving more time for reuse to happen, at the
// Increasing the ring size means giving more time for reuse to happen, at the
// cost of possibly increasing peak committed memory usage (and increasing the
// size of PartitionRoot a bit, since the ring buffer is there). Note that the
// ring buffer doesn't necessarily contain an empty SlotSpan, as SlotSpans are
@ -478,24 +476,28 @@ constexpr size_t kBitsPerSizeT = sizeof(void*) * CHAR_BIT;
// PurgeFlags::kDecommitEmptySlotSpans flag will eagerly decommit all entries
// in the ring buffer, so with periodic purge enabled, this typically happens
// every few seconds.
//
// The constants below define the empty ring size:
// - In foreground mode (see `PartitionRoot::AdjustForForeground`).
constexpr size_t kForegroundEmptySlotSpanRingSize =
#if PA_BUILDFLAG(USE_LARGE_EMPTY_SLOT_SPAN_RING)
// USE_LARGE_EMPTY_SLOT_SPAN_RING results in two size. kMaxEmptyCacheIndexBits,
// which is used when the renderer is in the foreground, and
// kMinEmptyCacheIndexBits which is used when the renderer is in the background.
constexpr size_t kMaxEmptyCacheIndexBits = 10;
constexpr size_t kMinEmptyCacheIndexBits = 7;
1 << 10;
#else
constexpr size_t kMaxEmptyCacheIndexBits = 7;
constexpr size_t kMinEmptyCacheIndexBits = 7;
1 << 7;
#endif
static_assert(kMinEmptyCacheIndexBits <= kMaxEmptyCacheIndexBits,
"min size must be <= max size");
// kMaxFreeableSpans is the buffer size, but is never used as an index value,
// hence <= is appropriate.
constexpr size_t kMaxFreeableSpans = 1 << kMaxEmptyCacheIndexBits;
constexpr size_t kMinFreeableSpans = 1 << kMinEmptyCacheIndexBits;
// - In background mode or large empty slot span ring mode (see
// `PartitionRoot::AdjustForBackground` and
// `PartitionRoot::EnableLargeEmptySlotSpanRing`).
constexpr size_t kBackgroundEmptySlotSpanRingSize = 1 << 7;
// - By default.
constexpr size_t kDefaultEmptySlotSpanRingSize = 16;
// This is the maximum ring size supported across all modes:
constexpr size_t kMaxEmptySlotSpanRingSize = kForegroundEmptySlotSpanRingSize;
static_assert(kMaxEmptySlotSpanRingSize >= kForegroundEmptySlotSpanRingSize);
static_assert(kMaxEmptySlotSpanRingSize >= kBackgroundEmptySlotSpanRingSize);
static_assert(kMaxEmptySlotSpanRingSize >= kDefaultEmptySlotSpanRingSize);
// If the total size in bytes of allocated but not committed pages exceeds this
// value (probably it is a "out of virtual address space" crash), a special
// crash stack trace is generated at

View file

@ -223,6 +223,18 @@ SlotSpanMetadata<MetadataKind::kReadOnly>* PartitionDirectMap(
PartitionPageMetadata<MetadataKind::kReadOnly>* page_metadata = nullptr;
{
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
// Because of the performance reason, PartitionRoot's lock is unlocked
// here. However this causes multi-thread issue when running
// EnableShadowMetadata(). If some thread is running PartitionDirectMap()
// and unlock PartitionRoot lock and also another thread is running
// EnableShadowMetadata(), the metadata page's permission will be modified
// by both threads and chrome will crash. c.f. crbug.com/378809882
// Be careful. This should not block PartitionDirectMap() in another thread.
internal::SharedLock shared_lock(
PartitionRoot::g_shadow_metadata_init_mutex_);
#endif // PA_CONFIG(ENABLE_SHADOW_METADATA)
// Getting memory for direct-mapped allocations doesn't interact with the
// rest of the allocator, but takes a long time, as it involves several
// system calls. Although no mmap() (or equivalent) calls are made on
@ -672,7 +684,7 @@ PartitionBucket::AllocNewSlotSpan(PartitionRoot* root,
for (auto* page = gap_start_page->ToWritable(root);
page < gap_end_page->ToWritable(root); ++page) {
PA_DCHECK(!page->is_valid);
page->has_valid_span_after_this = 1;
page->has_valid_span_after_this = true;
}
root->next_partition_page =
adjusted_next_partition_page + slot_span_reservation_size;
@ -696,7 +708,7 @@ PartitionBucket::AllocNewSlotSpan(PartitionRoot* root,
PA_DEBUG_DATA_ON_STACK("spancmt", slot_span_committed_size);
root->RecommitSystemPagesForData(
slot_span_start, slot_span_committed_size,
slot_span_start, SlotSpanCommittedSize(root),
PageAccessibilityDisposition::kRequireUpdate,
slot_size <= kMaxMemoryTaggingSize);
}
@ -1578,4 +1590,63 @@ void PartitionBucket::InitializeSlotSpanForGwpAsan(
InitializeSlotSpan(slot_span, root);
}
size_t PartitionBucket::SlotSpanCommittedSize(PartitionRoot* root) const {
// With lazy commit, we certainly don't want to commit more than
// necessary. This is not reached, but keep the CHECK() as documentation.
PA_CHECK(!kUseLazyCommit);
// Memory is reserved in units of PartitionPage, but a given slot span may be
// smaller than the reserved area. For instance (assuming 4k pages), for a
// bucket where the slot span size is 40kiB, we reserve 4 PartitionPage = 16 *
// 4 = 48kiB, but only ever commit 40kiB out of it.
//
// This means that the address space then looks like, assuming that the
// PartitionPage next to it is committed:
// [SlotSpan range, 40kiB] rw-p
// [Unused area in the last PartitionPage, 8kiB] ---p
// [Next PartitionPages, size unknown ] rw-p
//
// So we have a "hole" of inaccessible memory, and 3 memory regions. If
// instead we commit the full PartitionPages, we get (due to the kernel
// merging neighboring regions with uniform permissions):
//
// [SlotSpan range, 40kiB + Unused area, 8kiB + next PartitionPages] rw-p
//
// So 1 memory region rather then 3. This matters, because on Linux kernels,
// there is a maximum number of VMAs per process, with the default limit a bit
// less than 2^16, and Chromium sometimes hits the limit (see
// /proc/sys/vm/max_map_count for the current limit), largely because of
// PartitionAlloc contributing thousands of regions. Locally, on a Linux
// system, this reduces the number of PartitionAlloc regions by up to ~4x.
//
// Why is it safe?
// The extra memory is not used by anything, so committing it doesn't make a
// difference. It makes it accessible though.
//
// How much does it cost?
// Almost nothing. On Linux, "committing" memory merely changes its
// permissions, it doesn't cost any memory until the pages are touched, which
// they are not. However, mprotect()-ed areas that are writable count towards
// the RLIMIT_DATA resource limit, which is used by the sandbox. So, while
// this change costs 0 physical memory (and actually saves some, by reducing
// the size of the VMA red-black tree in the kernel), it might increase
// slightly the cases where we bump into the sandbox memory limit.
//
// Is it safe to do while running?
// Since this is decided through root settings, the value changes at runtime,
// so we may decommit memory that was never committed. This is safe onLinux,
// since decommitting is just changing permissions back to PROT_NONE, which
// the tail end would already have.
//
// Can we do better?
// For simplicity, we do not "fix" the regions that were committed before the
// settings are changed (after feature list initialization). This means that
// we end up with more regions that we could. The intent is to run a field
// experiment, then change the default value, at which point we get the full
// impact, so this is only temporary.
return root->settings.fewer_memory_regions
? (get_pages_per_slot_span() << PartitionPageShift())
: get_bytes_per_span();
}
} // namespace partition_alloc::internal

View file

@ -1,7 +1,6 @@
// Copyright 2018 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef PARTITION_ALLOC_PARTITION_BUCKET_H_
#define PARTITION_ALLOC_PARTITION_BUCKET_H_
@ -171,6 +170,8 @@ struct PartitionBucket {
SlotSpanMetadata<MetadataKind::kReadOnly>* slot_span,
PartitionRoot* root);
size_t SlotSpanCommittedSize(PartitionRoot* root) const;
private:
// Sets `this->can_store_raw_size`.
void InitCanStoreRawSize(bool use_small_single_slot_spans);

View file

@ -0,0 +1,28 @@
// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "partition_alloc/partition_cookie.h"
#include <cstdint>
#include <type_traits>
#include "partition_alloc/partition_alloc_check.h"
#if PA_BUILDFLAG(USE_PARTITION_COOKIE)
namespace partition_alloc::internal {
[[noreturn]] PA_NOINLINE PA_NOT_TAIL_CALLED void CookieCorruptionDetected(
unsigned char* cookie_ptr,
size_t slot_usable_size) {
using CookieValue = std::conditional_t<kCookieSize == 4, uint32_t, uint64_t>;
static_assert(sizeof(CookieValue) <= kCookieSize);
CookieValue cookie =
*static_cast<CookieValue*>(static_cast<void*>(cookie_ptr));
PA_DEBUG_DATA_ON_STACK("slotsize", slot_usable_size);
PA_DEBUG_DATA_ON_STACK("cookie", cookie);
PA_NO_CODE_FOLDING();
PA_IMMEDIATE_CRASH();
}
} // namespace partition_alloc::internal
#endif // PA_BUILDFLAG(USE_PARTITION_COOKIE)

View file

@ -9,22 +9,44 @@
#include "partition_alloc/partition_alloc_base/compiler_specific.h"
#include "partition_alloc/partition_alloc_check.h"
#if PA_BUILDFLAG(SMALLER_PARTITION_COOKIE)
#include "partition_alloc/in_slot_metadata.h"
#endif // PA_BUILDFLAG(SMALLER_PARTITION_COOKIE)
namespace partition_alloc::internal {
#if PA_BUILDFLAG(SMALLER_PARTITION_COOKIE)
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
static constexpr size_t kCookieSize =
AlignUpInSlotMetadataSizeForApple(sizeof(InSlotMetadata));
static_assert(kCookieSize == kInSlotMetadataSizeAdjustment);
#else
// Size of `InSlotMetadata` is unknown: using 4 bytes as an estimate.
static constexpr size_t kCookieSize = AlignUpInSlotMetadataSizeForApple(4);
static_assert(kCookieSize <= 16);
#endif // PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
#else
static constexpr size_t kCookieSize = 16;
#endif // PA_BUILDFLAG(SMALLER_PARTITION_COOKIE)
// Cookie is enabled for debug builds.
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
#if PA_BUILDFLAG(USE_PARTITION_COOKIE)
inline constexpr unsigned char kCookieValue[kCookieSize] = {
inline constexpr unsigned char kCookieValue[] = {
0xDE, 0xAD, 0xBE, 0xEF, 0xCA, 0xFE, 0xD0, 0x0D,
0x13, 0x37, 0xF0, 0x05, 0xBA, 0x11, 0xAB, 0x1E};
constexpr size_t kPartitionCookieSizeAdjustment = kCookieSize;
PA_ALWAYS_INLINE void PartitionCookieCheckValue(unsigned char* cookie_ptr) {
[[noreturn]] PA_NOINLINE PA_NOT_TAIL_CALLED PA_COMPONENT_EXPORT(
PARTITION_ALLOC) void CookieCorruptionDetected(unsigned char* cookie_ptr,
size_t slot_usable_size);
PA_ALWAYS_INLINE void PartitionCookieCheckValue(unsigned char* cookie_ptr,
size_t slot_usable_size) {
for (size_t i = 0; i < kCookieSize; ++i, ++cookie_ptr) {
PA_DCHECK(*cookie_ptr == kCookieValue[i]);
if (*cookie_ptr != kCookieValue[i]) {
CookieCorruptionDetected(cookie_ptr, slot_usable_size);
}
}
}
@ -38,11 +60,12 @@ PA_ALWAYS_INLINE void PartitionCookieWriteValue(unsigned char* cookie_ptr) {
constexpr size_t kPartitionCookieSizeAdjustment = 0;
PA_ALWAYS_INLINE void PartitionCookieCheckValue(unsigned char* address) {}
PA_ALWAYS_INLINE void PartitionCookieCheckValue(unsigned char* address,
size_t slot_usable_size) {}
PA_ALWAYS_INLINE void PartitionCookieWriteValue(unsigned char* cookie_ptr) {}
#endif // PA_BUILDFLAG(DCHECKS_ARE_ON)
#endif // PA_BUILDFLAG(USE_PARTITION_COOKIE)
} // namespace partition_alloc::internal

View file

@ -107,7 +107,7 @@ struct PartitionFreelistDispatcher {
#else
static const PartitionFreelistDispatcher* Create(
PartitionFreelistEncoding encoding) {
static PA_CONSTINIT PartitionFreelistDispatcher dispatcher =
PA_CONSTINIT static PartitionFreelistDispatcher dispatcher =
PartitionFreelistDispatcher();
return &dispatcher;
}

View file

@ -24,7 +24,8 @@ class PA_LOCKABLE Lock {
public:
inline constexpr Lock();
void Acquire() PA_EXCLUSIVE_LOCK_FUNCTION() {
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
#if PA_BUILDFLAG(DCHECKS_ARE_ON) || \
PA_BUILDFLAG(ENABLE_PARTITION_LOCK_REENTRANCY_CHECK)
#if PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
LiftThreadIsolationScope lift_thread_isolation_restrictions;
#endif
@ -54,55 +55,69 @@ class PA_LOCKABLE Lock {
[[unlikely]] {
// Trying to acquire lock while it's held by this thread: reentrancy
// issue.
PA_IMMEDIATE_CRASH();
ReentrancyIssueDetected();
}
lock_.Acquire();
}
owning_thread_ref_.store(current_thread, std::memory_order_release);
#else
lock_.Acquire();
#endif
#endif // PA_BUILDFLAG(DCHECKS_ARE_ON) ||
// PA_BUILDFLAG(ENABLE_PARTITION_LOCK_REENTRANCY_CHECK)
}
void Release() PA_UNLOCK_FUNCTION() {
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
#if PA_BUILDFLAG(DCHECKS_ARE_ON) || \
PA_BUILDFLAG(ENABLE_PARTITION_LOCK_REENTRANCY_CHECK)
#if PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
LiftThreadIsolationScope lift_thread_isolation_restrictions;
#endif
owning_thread_ref_.store(base::PlatformThreadRef(),
std::memory_order_release);
#endif
#endif // PA_BUILDFLAG(DCHECKS_ARE_ON) ||
// PA_BUILDFLAG(ENABLE_PARTITION_LOCK_REENTRANCY_CHECK)
lock_.Release();
}
void AssertAcquired() const PA_ASSERT_EXCLUSIVE_LOCK() {
lock_.AssertAcquired();
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
#if PA_BUILDFLAG(DCHECKS_ARE_ON) || \
PA_BUILDFLAG(ENABLE_PARTITION_LOCK_REENTRANCY_CHECK)
#if PA_BUILDFLAG(ENABLE_THREAD_ISOLATION)
LiftThreadIsolationScope lift_thread_isolation_restrictions;
#endif
PA_DCHECK(owning_thread_ref_.load(std ::memory_order_acquire) ==
base::PlatformThread::CurrentRef());
#endif
#endif // PA_BUILDFLAG(DCHECKS_ARE_ON) ||
// PA_BUILDFLAG(ENABLE_PARTITION_LOCK_REENTRANCY_CHECK)
}
void Reinit() PA_UNLOCK_FUNCTION() {
lock_.AssertAcquired();
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
#if PA_BUILDFLAG(DCHECKS_ARE_ON) || \
PA_BUILDFLAG(ENABLE_PARTITION_LOCK_REENTRANCY_CHECK)
owning_thread_ref_.store(base::PlatformThreadRef(),
std::memory_order_release);
#endif
#endif // PA_BUILDFLAG(DCHECKS_ARE_ON) ||
// PA_BUILDFLAG(ENABLE_PARTITION_LOCK_REENTRANCY_CHECK)
lock_.Reinit();
}
private:
[[noreturn]] PA_NOINLINE PA_NOT_TAIL_CALLED void ReentrancyIssueDetected() {
PA_NO_CODE_FOLDING();
PA_IMMEDIATE_CRASH();
}
SpinningMutex lock_;
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
#if PA_BUILDFLAG(DCHECKS_ARE_ON) || \
PA_BUILDFLAG(ENABLE_PARTITION_LOCK_REENTRANCY_CHECK)
// Should in theory be protected by |lock_|, but we need to read it to detect
// recursive lock acquisition (and thus, the allocator becoming reentrant).
std::atomic<base::PlatformThreadRef> owning_thread_ref_ =
base::PlatformThreadRef();
#endif
#endif // PA_BUILDFLAG(DCHECKS_ARE_ON) ||
// PA_BUILDFLAG(ENABLE_PARTITION_LOCK_REENTRANCY_CHECK)
};
class PA_SCOPED_LOCKABLE ScopedGuard {

View file

@ -15,6 +15,7 @@
#include "partition_alloc/partition_address_space.h"
#include "partition_alloc/partition_alloc_base/bits.h"
#include "partition_alloc/partition_alloc_base/compiler_specific.h"
#include "partition_alloc/partition_alloc_base/numerics/safe_conversions.h"
#include "partition_alloc/partition_alloc_check.h"
#include "partition_alloc/partition_alloc_constants.h"
#include "partition_alloc/partition_alloc_forward.h"
@ -133,6 +134,8 @@ SlotSpanMetadata<MetadataKind::kWritable>::RegisterEmpty() {
if (current_index == root->global_empty_slot_span_ring_size) {
current_index = 0;
}
PA_DCHECK(current_index <
base::checked_cast<int16_t>(internal::kMaxEmptySlotSpanRingSize));
root->global_empty_slot_span_ring_index = current_index;
// Avoid wasting too much memory on empty slot spans. Note that we only divide
@ -245,7 +248,7 @@ void SlotSpanMetadata<MetadataKind::kWritable>::Decommit(PartitionRoot* root) {
size_t dirty_size =
base::bits::AlignUp(GetProvisionedSize(), SystemPageSize());
size_t size_to_decommit =
kUseLazyCommit ? dirty_size : bucket->get_bytes_per_span();
kUseLazyCommit ? dirty_size : bucket->SlotSpanCommittedSize(root);
PA_DCHECK(root->empty_slot_spans_dirty_bytes >= dirty_size);
root->empty_slot_spans_dirty_bytes -= dirty_size;
@ -276,7 +279,7 @@ void SlotSpanMetadata<MetadataKind::kWritable>::DecommitIfPossible(
PartitionRoot* root) {
PartitionRootLock(root).AssertAcquired();
PA_DCHECK(in_empty_cache_);
PA_DCHECK(empty_cache_index_ < kMaxFreeableSpans);
PA_DCHECK(empty_cache_index_ < kMaxEmptySlotSpanRingSize);
PA_DCHECK(ToReadOnly(root) ==
root->global_empty_slot_span_ring[empty_cache_index_]);
in_empty_cache_ = 0;
@ -408,6 +411,17 @@ void UnmapNow(uintptr_t reservation_start,
*offset_ptr++ = kOffsetTagNotAllocated;
}
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
// UnmapShadowMetadata must be done before unreserving memory, because
// Unreserved memory may be allocated by PartitionDirectMap() in another
// thread. In the case, MapShadowMetadata() and UnmapShadowMetadata()
// will be executed for the same system pages in wrong order. It causes
// memory access error.
if (internal::PartitionAddressSpace::IsShadowMetadataEnabled(pool)) {
PartitionAddressSpace::UnmapShadowMetadata(reservation_start, pool);
}
#endif
#if !PA_BUILDFLAG(HAS_64_BIT_POINTERS)
AddressPoolManager::GetInstance().MarkUnused(pool, reservation_start,
reservation_size);
@ -416,12 +430,6 @@ void UnmapNow(uintptr_t reservation_start,
// After resetting the table entries, unreserve and decommit the memory.
AddressPoolManager::GetInstance().UnreserveAndDecommit(
pool, reservation_start, reservation_size);
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
if (internal::PartitionAddressSpace::IsShadowMetadataEnabled(pool)) {
PartitionAddressSpace::UnmapShadowMetadata(reservation_start, pool);
}
#endif
}
} // namespace

View file

@ -102,8 +102,11 @@ struct SlotSpanMetadataBase {
// If |in_empty_cache_|==1, |empty_cache_index| is undefined and mustn't be
// used.
MaybeConstT<kind, uint16_t> in_empty_cache_ : 1 = 0u;
// Index of the page in the empty cache. This is in the range
// [0, `kMaxEmptySlotSpanRingSize - 1`] so it fits in
// `BitWidth(kMaxEmptySlotSpanRingSize - 1)`.
MaybeConstT<kind, uint16_t> empty_cache_index_
: kMaxEmptyCacheIndexBits = 0u; // < kMaxFreeableSpans.
: internal::base::bits::BitWidth(kMaxEmptySlotSpanRingSize - 1) = 0u;
// Can use only 48 bits (6B) in this bitfield, as this structure is embedded
// in PartitionPage which has 2B worth of fields and must fit in 32B.
@ -170,8 +173,7 @@ struct SlotSpanMetadata<MetadataKind::kReadOnly>
: SlotSpanMetadataBase<MetadataKind::kReadOnly>(b) {}
#endif // PA_CONFIG(ENABLE_SHADOW_METADATA)
// pa_tcache_inspect needs the copy constructor.
SlotSpanMetadata<MetadataKind::kReadOnly>(
const SlotSpanMetadata<MetadataKind::kReadOnly>&) = default;
SlotSpanMetadata(const SlotSpanMetadata<MetadataKind::kReadOnly>&) = default;
// Public API
// Pointer/address manipulation functions. These must be static as the input
@ -936,8 +938,7 @@ PA_ALWAYS_INLINE void SlotSpanMetadata<MetadataKind::kWritable>::Reset() {
// Iterates over all slot spans in a super-page. |Callback| must return true if
// early return is needed.
template <typename Callback>
void IterateSlotSpans(uintptr_t super_page,
Callback callback) {
void IterateSlotSpans(uintptr_t super_page, Callback callback) {
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
PA_DCHECK(!(super_page % kSuperPageAlignment));
auto* extent_entry = PartitionSuperPageToExtent(super_page);

View file

@ -17,7 +17,7 @@ namespace partition_alloc::internal {
// PartitionPageSize() is 4 times the OS page size.
static constexpr size_t kMaxSlotsPerSlotSpan = 4 * (1 << 14) / kSmallestBucket;
#elif defined(PARTITION_ALLOCATOR_CONSTANTS_POSIX_NONCONST_PAGE_SIZE) && \
PA_BUILDFLAG(IS_LINUX) && \
PA_BUILDFLAG(IS_LINUX) && \
(PA_BUILDFLAG(PA_ARCH_CPU_ARM64) || PA_BUILDFLAG(PA_ARCH_CPU_PPC64))
// System page size can be 4, 16, or 64 kiB on Linux on AArch64.
// System page size can be 4 or 64 kiB on Linux on ppc64.

View file

@ -46,6 +46,13 @@
#if PA_BUILDFLAG(IS_LINUX) || PA_BUILDFLAG(IS_CHROMEOS)
#include <pthread.h>
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
#include <sys/mman.h>
#endif // PA_CONFIG(ENABLE_SHADOW_METADATA)
#endif // PA_BUILDFLAG(IS_LINUX) || PA_BUILDFLAG(IS_CHROMEOS)
#if defined(__MUSL__)
#include "partition_alloc/shim/allocator_shim.h"
#endif
namespace partition_alloc::internal {
@ -102,6 +109,10 @@ PtrPosWithinAlloc IsPtrWithinSameAlloc(uintptr_t orig_address,
namespace partition_alloc {
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
internal::SharedMutex PartitionRoot::g_shadow_metadata_init_mutex_;
#endif // PA_CONFIG(ENABLE_SHADOW_METADATA)
#if PA_CONFIG(USE_PARTITION_ROOT_ENUMERATOR)
namespace {
@ -290,12 +301,7 @@ void PartitionAllocMallocInitOnce() {
return;
}
#if defined(__MUSL__)
// Musl calls malloc() in pthread_atfork(), resulting in a deadlock.
static_cast<void>(BeforeForkInParent);
static_cast<void>(AfterForkInParent);
static_cast<void>(AfterForkInChild);
#elif PA_BUILDFLAG(IS_LINUX) || PA_BUILDFLAG(IS_CHROMEOS)
#if PA_BUILDFLAG(IS_LINUX) || PA_BUILDFLAG(IS_CHROMEOS)
// When fork() is called, only the current thread continues to execute in the
// child process. If the lock is held, but *not* by this thread when fork() is
// called, we have a deadlock.
@ -317,9 +323,25 @@ void PartitionAllocMallocInitOnce() {
// However, no perfect solution really exists to make threads + fork()
// cooperate, but deadlocks are real (and fork() is used in DEATH_TEST()s),
// and other malloc() implementations use the same techniques.
#if defined(__MUSL__)
allocator_shim::AllocatorDispatch d =
*allocator_shim::GetAllocatorDispatchChainHeadForTesting();
d.alloc_function = +[](size_t size, void*) -> void* {
// The size of the scratch fits struct atfork_funcs in Musl pthread_atfork.c.
static char scratch[5 * sizeof(void*)];
return size != sizeof(scratch) ? nullptr : scratch;
};
allocator_shim::InsertAllocatorDispatch(&d);
#endif
int err =
pthread_atfork(BeforeForkInParent, AfterForkInParent, AfterForkInChild);
PA_CHECK(err == 0);
#if defined(__MUSL__)
allocator_shim::RemoveAllocatorDispatchForTesting(&d);
#endif
#endif // PA_BUILDFLAG(IS_LINUX) || PA_BUILDFLAG(IS_CHROMEOS)
}
@ -1139,11 +1161,6 @@ void PartitionRoot::Init(PartitionOptions opts) {
ReserveBackupRefPtrGuardRegionIfNeeded();
#endif
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
settings.use_cookie = true;
#else
static_assert(!Settings::use_cookie);
#endif // PA_BUILDFLAG(DCHECKS_ARE_ON)
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
settings.brp_enabled_ = opts.backup_ref_ptr == PartitionOptions::kEnabled;
#else // PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
@ -1155,6 +1172,10 @@ void PartitionRoot::Init(PartitionOptions opts) {
PA_DCHECK(!settings.use_configurable_pool || IsConfigurablePoolAvailable());
settings.zapping_by_free_flags =
opts.zapping_by_free_flags == PartitionOptions::kEnabled;
settings.eventually_zero_freed_memory =
opts.eventually_zero_freed_memory == PartitionOptions::kEnabled;
settings.fewer_memory_regions =
opts.fewer_memory_regions == PartitionOptions::kEnabled;
settings.scheduler_loop_quarantine =
opts.scheduler_loop_quarantine == PartitionOptions::kEnabled;
@ -1211,7 +1232,7 @@ void PartitionRoot::Init(PartitionOptions opts) {
#if PA_CONFIG(EXTRAS_REQUIRED)
settings.extras_size = 0;
if (settings.use_cookie) {
if (Settings::use_cookie) {
settings.extras_size += internal::kPartitionCookieSizeAdjustment;
}
@ -1219,6 +1240,7 @@ void PartitionRoot::Init(PartitionOptions opts) {
if (brp_enabled()) {
settings.in_slot_metadata_size = internal::kInSlotMetadataSizeAdjustment;
settings.extras_size += internal::kInSlotMetadataSizeAdjustment;
settings.extras_size += opts.backup_ref_ptr_extra_extras_size;
#if PA_CONFIG(MAYBE_ENABLE_MAC11_MALLOC_SIZE_HACK)
EnableMac11MallocSizeHackIfNeeded();
#endif
@ -1352,6 +1374,9 @@ void PartitionRoot::EnableThreadCacheIfSupported() {
thread_caches_being_constructed_.fetch_add(1, std::memory_order_acquire);
PA_CHECK(before == 0);
ThreadCache::Init(this);
// Create thread cache for this thread so that we can start using it right
// after.
ThreadCache::Create(this);
thread_caches_being_constructed_.fetch_sub(1, std::memory_order_release);
settings.with_thread_cache = true;
#endif // PA_CONFIG(THREAD_CACHE_SUPPORTED)
@ -1477,7 +1502,7 @@ bool PartitionRoot::TryReallocInPlaceForDirectMap(
}
// Write a new trailing cookie.
if (settings.use_cookie) {
if (Settings::use_cookie) {
auto* object = static_cast<unsigned char*>(SlotStartToObject(slot_start));
internal::PartitionCookieWriteValue(object + GetSlotUsableSize(slot_span));
}
@ -1526,7 +1551,7 @@ bool PartitionRoot::TryReallocInPlaceForNormalBuckets(
// PA_BUILDFLAG(DCHECKS_ARE_ON)
// Write a new trailing cookie only when it is possible to keep track
// raw size (otherwise we wouldn't know where to look for it later).
if (settings.use_cookie) {
if (Settings::use_cookie) {
internal::PartitionCookieWriteValue(static_cast<unsigned char*>(object) +
GetSlotUsableSize(slot_span));
}
@ -1645,9 +1670,9 @@ void PartitionRoot::ShrinkEmptySlotSpansRing(size_t limit) {
index += 1;
// Walk through the entirety of possible slots, even though the last ones
// are unused, if global_empty_slot_span_ring_size is smaller than
// kMaxFreeableSpans. It's simpler, and does not cost anything, since all
// the pointers are going to be nullptr.
if (index == internal::kMaxFreeableSpans) {
// kMaxEmptySlotSpanRingSize. It's simpler, and does not cost anything,
// since all the pointers are going to be nullptr.
if (index == internal::kMaxEmptySlotSpanRingSize) {
index = 0;
}
@ -1962,6 +1987,17 @@ PA_NOINLINE void PartitionRoot::QuarantineForBrp(
// static
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
void PartitionRoot::EnableShadowMetadata(internal::PoolHandleMask mask) {
#if PA_BUILDFLAG(IS_LINUX)
// TODO(crbug.com/40238514): implement ModuleCache() or something to
// load required shared libraries in advance.
// Since memfd_create() causes dlsym(), it is not possible to invoke
// memfd_create() while PartitionRoot-s are locked.
// So invoke memfd_create() here and invoke dysym() in advance.
// This is required to enable ShadowMetadata on utility processes.
{ close(memfd_create("module_cache", MFD_CLOEXEC)); }
#endif
internal::UniqueLock unique_lock(g_shadow_metadata_init_mutex_);
internal::ScopedGuard guard(g_root_enumerator_lock);
// Must lock all PartitionRoot-s and ThreadCache.
internal::PartitionRootEnumerator::Instance().Enumerate(
@ -2011,7 +2047,7 @@ static_assert(offsetof(PartitionRoot, sentinel_bucket) ==
"sentinel_bucket must be just after the regular buckets.");
static_assert(
offsetof(PartitionRoot, lock_) >= 64,
offsetof(PartitionRoot, lock_) >= internal::kPartitionCachelineSize,
"The lock should not be on the same cacheline as the read-mostly flags");
#if defined(__clang__)
#pragma clang diagnostic pop

View file

@ -71,6 +71,7 @@
#include "partition_alloc/partition_lock.h"
#include "partition_alloc/partition_oom.h"
#include "partition_alloc/partition_page.h"
#include "partition_alloc/partition_shared_mutex.h"
#include "partition_alloc/reservation_offset_table.h"
#include "partition_alloc/tagging.h"
#include "partition_alloc/thread_cache.h"
@ -165,14 +166,23 @@ struct PartitionOptions {
static constexpr auto kEnabled = EnableToggle::kEnabled;
EnableToggle thread_cache = kDisabled;
AllowToggle star_scan_quarantine = kDisallowed;
EnableToggle backup_ref_ptr = kDisabled;
AllowToggle use_configurable_pool = kDisallowed;
// TODO(https://crbug.com/371135823): Remove after the investigation.
size_t backup_ref_ptr_extra_extras_size = 0;
EnableToggle scheduler_loop_quarantine = kDisabled;
size_t scheduler_loop_quarantine_branch_capacity_in_bytes = 0;
EnableToggle zapping_by_free_flags = kDisabled;
// As the name implies, this is not a security measure, as there is no
// guarantee that memorys has been zeroed out when handed back to the
// application, or when free() returns. This is intended to improve the
// compression ratio of freed memory inside partially allocated pages (due to
// fragmentation).
EnableToggle eventually_zero_freed_memory = kDisabled;
EnableToggle fewer_memory_regions = kDisabled;
struct {
EnableToggle enabled = kDisabled;
@ -238,11 +248,11 @@ struct alignas(64) PA_COMPONENT_EXPORT(PARTITION_ALLOC) PartitionRoot {
bool with_thread_cache = false;
#if PA_BUILDFLAG(DCHECKS_ARE_ON)
bool use_cookie = false;
#if PA_BUILDFLAG(USE_PARTITION_COOKIE)
static constexpr bool use_cookie = true;
#else
static constexpr bool use_cookie = false;
#endif // PA_BUILDFLAG(DCHECKS_ARE_ON)
#endif // PA_BUILDFLAG(USE_PARTITION_COOKIE)
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
bool brp_enabled_ = false;
#if PA_CONFIG(MAYBE_ENABLE_MAC11_MALLOC_SIZE_HACK)
@ -252,8 +262,14 @@ struct alignas(64) PA_COMPONENT_EXPORT(PARTITION_ALLOC) PartitionRoot {
size_t in_slot_metadata_size = 0;
#endif // PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
bool use_configurable_pool = false;
// Despite its name, `FreeFlags` for zapping is deleted and does not exist.
// This value is used for SchedulerLoopQuarantine.
// TODO(https://crbug.com/351974425): group this setting and quarantine
// setting in one place.
bool zapping_by_free_flags = false;
bool eventually_zero_freed_memory = false;
bool scheduler_loop_quarantine = false;
bool fewer_memory_regions = false;
#if PA_BUILDFLAG(HAS_MEMORY_TAGGING)
bool memory_tagging_enabled_ = false;
bool use_random_memory_tagging_ = false;
@ -348,8 +364,8 @@ struct alignas(64) PA_COMPONENT_EXPORT(PARTITION_ALLOC) PartitionRoot {
ReadOnlySuperPageExtentEntry* first_extent = nullptr;
ReadOnlyDirectMapExtent* direct_map_list
PA_GUARDED_BY(internal::PartitionRootLock(this)) = nullptr;
ReadOnlySlotSpanMetadata*
global_empty_slot_span_ring[internal::kMaxFreeableSpans] PA_GUARDED_BY(
ReadOnlySlotSpanMetadata* global_empty_slot_span_ring
[internal::kMaxEmptySlotSpanRingSize] PA_GUARDED_BY(
internal::PartitionRootLock(this)) = {};
int16_t global_empty_slot_span_ring_index
PA_GUARDED_BY(internal::PartitionRootLock(this)) = 0;
@ -380,6 +396,12 @@ struct alignas(64) PA_COMPONENT_EXPORT(PARTITION_ALLOC) PartitionRoot {
internal::base::TimeTicks (*now_maybe_overridden_for_testing)() =
internal::base::TimeTicks::Now;
#if PA_CONFIG(ENABLE_SHADOW_METADATA)
// Locks not to run EnableShadowMetadata() and PartitionDirectMap()
// at the same time.
static internal::SharedMutex g_shadow_metadata_init_mutex_;
#endif // PA_CONFIG(ENABLE_SHADOW_METADATA)
PartitionRoot();
explicit PartitionRoot(PartitionOptions opts);
@ -609,7 +631,8 @@ struct alignas(64) PA_COMPONENT_EXPORT(PARTITION_ALLOC) PartitionRoot {
void EnableLargeEmptySlotSpanRing() {
::partition_alloc::internal::ScopedGuard locker{
internal::PartitionRootLock(this)};
global_empty_slot_span_ring_size = internal::kMinFreeableSpans;
global_empty_slot_span_ring_size =
internal::kBackgroundEmptySlotSpanRingSize;
}
void DumpStats(const char* partition_name,
@ -751,6 +774,13 @@ struct alignas(64) PA_COMPONENT_EXPORT(PARTITION_ALLOC) PartitionRoot {
internal::DirectMapAllocationGranularity());
}
PA_ALWAYS_INLINE bool IsDirectMapped(
partition_alloc::internal::SlotSpanMetadata<
partition_alloc::internal::MetadataKind::kReadOnly>* slot_span)
const {
return IsDirectMappedBucket(slot_span->bucket);
}
PA_ALWAYS_INLINE size_t AdjustSize0IfNeeded(size_t size) const {
// There are known cases where allowing size 0 would lead to problems:
// 1. If extras are present only before allocation (e.g. in-slot metadata),
@ -823,18 +853,20 @@ struct alignas(64) PA_COMPONENT_EXPORT(PARTITION_ALLOC) PartitionRoot {
max_empty_slot_spans_dirty_bytes_shift = 2;
::partition_alloc::internal::ScopedGuard guard{
internal::PartitionRootLock(this)};
global_empty_slot_span_ring_size = internal::kMaxFreeableSpans;
global_empty_slot_span_ring_size =
internal::kForegroundEmptySlotSpanRingSize;
}
void AdjustForBackground() {
max_empty_slot_spans_dirty_bytes_shift = 3;
// ShrinkEmptySlotSpansRing() will iterate through kMaxFreeableSpans, so
// no need to for this to free any empty pages now.
// ShrinkEmptySlotSpansRing() will iterate through
// kMaxEmptySlotSpanRingSize, so no need to free empty pages now.
::partition_alloc::internal::ScopedGuard guard{
internal::PartitionRootLock(this)};
global_empty_slot_span_ring_size = internal::kMinFreeableSpans;
global_empty_slot_span_ring_size =
internal::kBackgroundEmptySlotSpanRingSize;
if (global_empty_slot_span_ring_index >=
static_cast<int16_t>(internal::kMinFreeableSpans)) {
static_cast<int16_t>(internal::kBackgroundEmptySlotSpanRingSize)) {
global_empty_slot_span_ring_index = 0;
}
}
@ -867,6 +899,14 @@ struct alignas(64) PA_COMPONENT_EXPORT(PARTITION_ALLOC) PartitionRoot {
return GetSchedulerLoopQuarantineBranch();
}
void SetSchedulerLoopQuarantineThreadLocalBranchCapacity(
size_t capacity_in_bytes) {
ThreadCache* thread_cache = this->GetOrCreateThreadCache();
PA_CHECK(ThreadCache::IsValid(thread_cache));
thread_cache->GetSchedulerLoopQuarantineBranch().SetCapacityInBytes(
capacity_in_bytes);
}
const internal::PartitionFreelistDispatcher* get_freelist_dispatcher() {
#if PA_BUILDFLAG(USE_FREELIST_DISPATCHER)
if (settings.use_pool_offset_freelists) {
@ -913,8 +953,8 @@ struct alignas(64) PA_COMPONENT_EXPORT(PARTITION_ALLOC) PartitionRoot {
//
// See crbug.com/1150772 for an instance of Clusterfuzz / UBSAN detecting
// this.
PA_ALWAYS_INLINE PA_NO_SANITIZE("undefined") const Bucket& bucket_at(
size_t i) const {
PA_NO_SANITIZE("undefined")
PA_ALWAYS_INLINE const Bucket& bucket_at(size_t i) const {
PA_DCHECK(i <= internal::kNumBuckets);
return buckets[i];
}
@ -1482,17 +1522,20 @@ PA_ALWAYS_INLINE void PartitionRoot::FreeInline(void* object) {
// cacheline ping-pong.
PA_PREFETCH(slot_span);
if constexpr (ContainsFlags(flags, FreeFlags::kZap)) {
if (settings.zapping_by_free_flags) {
internal::SecureMemset(object, internal::kFreedByte,
GetSlotUsableSize(slot_span));
}
}
// TODO(crbug.com/40287058): Collecting objects for
// `kSchedulerLoopQuarantineBranch` here means it "delays" other checks (BRP
// refcount, cookie, etc.)
// For better debuggability, we should do these checks before quarantining.
if constexpr (ContainsFlags(flags, FreeFlags::kSchedulerLoopQuarantine)) {
// No need to zap direct mapped allocations, as they are unmapped right
// away. This also ensures that we don't needlessly memset() very large
// allocations.
if (settings.zapping_by_free_flags &&
!IsDirectMappedBucket(slot_span->bucket)) {
internal::SecureMemset(object, internal::kFreedByte,
GetSlotUsableSize(slot_span));
}
if (settings.scheduler_loop_quarantine) {
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
// TODO(keishi): Add `[[likely]]` when brp is fully enabled as
@ -1545,11 +1588,12 @@ PA_ALWAYS_INLINE void PartitionRoot::FreeNoHooksImmediate(
// For more context, see the other "Layout inside the slot" comment inside
// AllocInternalNoHooks().
if (settings.use_cookie) {
if (Settings::use_cookie) {
// Verify the cookie after the allocated region.
// If this assert fires, you probably corrupted memory.
internal::PartitionCookieCheckValue(static_cast<unsigned char*>(object) +
GetSlotUsableSize(slot_span));
const size_t usable_size = GetSlotUsableSize(slot_span);
internal::PartitionCookieCheckValue(
static_cast<unsigned char*>(object) + usable_size, usable_size);
}
#if PA_BUILDFLAG(ENABLE_BACKUP_REF_PTR_SUPPORT)
@ -1562,11 +1606,14 @@ PA_ALWAYS_INLINE void PartitionRoot::FreeNoHooksImmediate(
// complete before we clear kMemoryHeldByAllocatorBit in
// ReleaseFromAllocator(), otherwise another thread may allocate and start
// using the slot in the middle of zapping.
bool was_zapped = false;
if (!ref_count->IsAliveWithNoKnownRefs()) [[unlikely]] {
was_zapped = true;
QuarantineForBrp(slot_span, object);
}
if (!(ref_count->ReleaseFromAllocator())) [[unlikely]] {
PA_CHECK(was_zapped);
total_size_of_brp_quarantined_bytes.fetch_add(
slot_span->GetSlotSizeForBookkeeping(), std::memory_order_relaxed);
total_count_of_brp_quarantined_slots.fetch_add(1,
@ -1630,6 +1677,7 @@ PA_ALWAYS_INLINE void PartitionRoot::RawFree(uintptr_t slot_start) {
PA_ALWAYS_INLINE void PartitionRoot::RawFree(
uintptr_t slot_start,
ReadOnlySlotSpanMetadata* slot_span) {
void* ptr = internal::SlotStartAddr2Ptr(slot_start);
// At this point we are about to acquire the lock, so we try to minimize the
// risk of blocking inside the locked section.
//
@ -1654,8 +1702,7 @@ PA_ALWAYS_INLINE void PartitionRoot::RawFree(
// RawFreeLocked()). This is intentional, as the thread cache is purged often,
// and the memory has a consequence the memory has already been touched
// recently (to link the thread cache freelist).
*static_cast<volatile uintptr_t*>(internal::SlotStartAddr2Ptr(slot_start)) =
0;
*static_cast<volatile uintptr_t*>(ptr) = 0;
// Note: even though we write to slot_start + sizeof(void*) as well, due to
// alignment constraints, the two locations are always going to be in the same
// OS page. No need to write to the second one as well.
@ -1664,6 +1711,21 @@ PA_ALWAYS_INLINE void PartitionRoot::RawFree(
#if !(PA_CONFIG(IS_NONCLANG_MSVC))
__asm__ __volatile__("" : : "r"(slot_start) : "memory");
#endif
// This is done for memory usage (by improving the compression ratio of heap
// pages), not for security, so we care more about being affordable than
// prompt. This is done after the thread cache, so most deallocation do not
// end up here. Nevertheless, we do not need to memset() direct-mapped
// allocations, as they are released right away. And single-slot slot spans
// are also excluded, because they can be entirely decommitted once leaving
// the global ring.
//
// This is done before acquiring the lock, to prevent page faults causing
// issues there.
if (settings.eventually_zero_freed_memory &&
!IsDirectMappedBucket(slot_span->bucket) &&
slot_span->bucket->get_slots_per_span() > 1) {
internal::SecureMemset(ptr, 0, GetSlotUsableSize(slot_span));
}
::partition_alloc::internal::ScopedGuard guard{
internal::PartitionRootLock(this)};
@ -2239,7 +2301,7 @@ PA_ALWAYS_INLINE void* PartitionRoot::AllocInternalNoHooks(
void* object = SlotStartToObject(slot_start);
// Add the cookie after the allocation.
if (settings.use_cookie) {
if (Settings::use_cookie) {
internal::PartitionCookieWriteValue(static_cast<unsigned char*>(object) +
usable_size);
}
@ -2529,7 +2591,7 @@ PartitionRoot::GetSchedulerLoopQuarantineBranch() {
if (ThreadCache::IsValid(thread_cache)) [[likely]] {
return thread_cache->GetSchedulerLoopQuarantineBranch();
} else {
return *scheduler_loop_quarantine->get();
return **scheduler_loop_quarantine;
}
}

View file

@ -0,0 +1,82 @@
// Copyright 2024 The Chromium Authors
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#ifndef PARTITION_ALLOC_PARTITION_SHARED_MUTEX_H_
#define PARTITION_ALLOC_PARTITION_SHARED_MUTEX_H_
#include "partition_alloc/partition_alloc_base/thread_annotations.h"
#include "partition_alloc/partition_lock.h"
namespace partition_alloc::internal {
// A partial implementation of `std::shared_mutex` for PartitionAllocator.
// Since `std::shared_mutex` allocates memory, we cannot use it inside
// PartitionAllocator. The difference between `std::shared_mutex` and this
// SharedMutex, this SharedMutex doesn't support try_lock() and
// try_lock_shared(), because no code uses the methods.
class PA_LOCKABLE SharedMutex {
public:
inline constexpr SharedMutex() = default;
void lock() PA_EXCLUSIVE_LOCK_FUNCTION() { writer_lock_.Acquire(); }
void unlock() PA_UNLOCK_FUNCTION() { writer_lock_.Release(); }
void lock_shared() PA_SHARED_LOCK_FUNCTION() {
ScopedGuard lock(reader_lock_);
++counter_;
if (counter_ == 1u) {
writer_lock_.Acquire();
}
}
void unlock_shared() PA_UNLOCK_FUNCTION() {
ScopedGuard lock(reader_lock_);
--counter_;
if (counter_ == 0u) {
writer_lock_.Release();
}
}
private:
Lock reader_lock_;
Lock writer_lock_;
size_t counter_ PA_GUARDED_BY(reader_lock_) = 0;
};
static_assert(std::is_trivially_destructible_v<SharedMutex>,
"SharedMutex must be trivally destructible.");
// A partial implementation of `std::unique_lock` for PartitionAllocator.
// Locking a UniqueLock locks the associated shared mutex in exclusive mode.
class PA_SCOPED_LOCKABLE UniqueLock {
public:
explicit UniqueLock(SharedMutex& mutex) PA_EXCLUSIVE_LOCK_FUNCTION(mutex)
: mutex_(mutex) {
mutex_.lock();
}
~UniqueLock() PA_UNLOCK_FUNCTION() { mutex_.unlock(); }
private:
SharedMutex& mutex_;
};
// A partial implementation of `std::shared_lock` for PartitionAllocator.
// Locking a SharedLock locks the associated shared mutex in shared mode.
// (like std::shared_lock).
class PA_SCOPED_LOCKABLE SharedLock {
public:
explicit SharedLock(SharedMutex& mutex) PA_SHARED_LOCK_FUNCTION(mutex)
: mutex_(mutex) {
mutex_.lock_shared();
}
~SharedLock() PA_UNLOCK_FUNCTION() { mutex_.unlock_shared(); }
private:
SharedMutex& mutex_;
};
} // namespace partition_alloc::internal
#endif // PARTITION_ALLOC_PARTITION_SHARED_MUTEX_H_

View file

@ -32,7 +32,6 @@ using PartitionTlsKey = pthread_key_t;
// which is not the case in macOS 12. See libsyscall/os/tsd.h in XNU
// (_os_tsd_get_direct() is used by pthread_getspecific() internally).
#if PA_BUILDFLAG(IS_MAC) && PA_BUILDFLAG(PA_ARCH_CPU_X86_64)
namespace {
PA_ALWAYS_INLINE void* FastTlsGet(PartitionTlsKey index) {
// On macOS, pthread_getspecific() is in libSystem, so a call to it has to go
@ -61,7 +60,6 @@ PA_ALWAYS_INLINE void* FastTlsGet(PartitionTlsKey index) {
return reinterpret_cast<void*>(result);
}
} // namespace
#endif // PA_BUILDFLAG(IS_MAC) && PA_BUILDFLAG(PA_ARCH_CPU_X86_64)
PA_ALWAYS_INLINE bool PartitionTlsCreate(PartitionTlsKey* key,

View file

@ -10,19 +10,27 @@
#include <cstddef>
#include <cstdint>
#include <functional>
#include <iterator>
#include <memory>
#include <type_traits>
#include <utility>
#include "partition_alloc/build_config.h"
#include "partition_alloc/buildflags.h"
#include "partition_alloc/flags.h"
#include "partition_alloc/partition_alloc_base/augmentations/compiler_specific.h"
#include "partition_alloc/partition_alloc_base/compiler_specific.h"
#include "partition_alloc/partition_alloc_base/component_export.h"
#include "partition_alloc/partition_alloc_base/cxx20_is_constant_evaluated.h"
#include "partition_alloc/partition_alloc_base/types/same_as_any.h"
#include "partition_alloc/partition_alloc_config.h"
#include "partition_alloc/partition_alloc_forward.h"
#include "partition_alloc/pointers/instance_tracer.h"
#if PA_HAVE_SPACESHIP_OPERATOR
#include <compare>
#endif
#if PA_BUILDFLAG(IS_WIN)
#include "partition_alloc/partition_alloc_base/win/win_handle_types.h"
#endif
@ -64,7 +72,7 @@ class TextureLayerImpl;
namespace base::internal {
class DelayTimerBase;
class JobTaskSource;
}
} // namespace base::internal
namespace base::test {
struct RawPtrCountingImplForTest;
}
@ -170,84 +178,29 @@ namespace raw_ptr_traits {
// that raw_ptr is not used with unsupported types. As an example, see how
// base::internal::Unretained(Ref)Wrapper uses IsSupportedType to decide whether
// it should use `raw_ptr<T>` or `T*`.
template <typename T, typename SFINAE = void>
struct IsSupportedType {
static constexpr bool value = true;
};
// raw_ptr<T> is not compatible with function pointer types. Also, they don't
// even need the raw_ptr protection, because they don't point on heap.
template <typename T>
struct IsSupportedType<T, std::enable_if_t<std::is_function_v<T>>> {
static constexpr bool value = false;
};
// This section excludes some types from raw_ptr<T> to avoid them from being
// used inside base::Unretained in performance sensitive places.
// The ones below were identified from sampling profiler data. See
// crbug.com/1287151 for more info.
template <>
struct IsSupportedType<cc::Scheduler> {
static constexpr bool value = false;
};
template <>
struct IsSupportedType<base::internal::DelayTimerBase> {
static constexpr bool value = false;
};
template <>
struct IsSupportedType<content::responsiveness::Calculator> {
static constexpr bool value = false;
};
// The ones below were identified from speedometer3. See crbug.com/335556942 for
// more info.
template <>
struct IsSupportedType<v8::JobTask> {
static constexpr bool value = false;
};
template <>
struct IsSupportedType<blink::scheduler::MainThreadTaskQueue> {
static constexpr bool value = false;
};
template <>
struct IsSupportedType<base::sequence_manager::internal::TaskQueueImpl> {
static constexpr bool value = false;
};
template <>
struct IsSupportedType<base::internal::JobTaskSource> {
static constexpr bool value = false;
};
template <>
struct IsSupportedType<mojo::Connector> {
static constexpr bool value = false;
};
template <>
struct IsSupportedType<blink::scheduler::NonMainThreadTaskQueue> {
static constexpr bool value = false;
};
// The ones below were identified from MotionMark. See crbug.com/335556942 for
// more info.
template <>
struct IsSupportedType<cc::ImageDecodeCache> {
static constexpr bool value = false;
};
template <>
struct IsSupportedType<cc::TextureLayerImpl> {
static constexpr bool value = false;
};
struct IsSupportedType {
static constexpr bool value =
// raw_ptr<T> is not compatible with function pointer types. Also, they
// don't even need the raw_ptr protection, because they don't point on
// heap.
!std::is_function_v<T> &&
#if __OBJC__
// raw_ptr<T> is not compatible with pointers to Objective-C classes for a
// multitude of reasons. They may fail to compile in many cases, and wouldn't
// work well with tagged pointers. Anyway, Objective-C objects have their own
// way of tracking lifespan, hence don't need the raw_ptr protection as much.
//
// Such pointers are detected by checking if they're convertible to |id| type.
template <typename T>
struct IsSupportedType<T, std::enable_if_t<std::is_convertible_v<T*, id>>> {
static constexpr bool value = false;
};
// raw_ptr<T> is not compatible with pointers to Objective-C classes for a
// multitude of reasons. They may fail to compile in many cases, and
// wouldn't work well with tagged pointers. Anyway, Objective-C objects
// have their own way of tracking lifespan, hence don't need the raw_ptr
// protection as much.
//
// Such pointers are detected by checking if they're convertible to |id|
// type.
!std::is_convertible_v<T*, id> &&
#endif // __OBJC__
// Specific disallowed types.
!partition_alloc::internal::base::kSameAsAny<
T,
#if PA_BUILDFLAG(IS_WIN)
// raw_ptr<HWND__> is unsafe at runtime - if the handle happens to also
// represent a valid pointer into a PartitionAlloc-managed region then it can
@ -263,14 +216,30 @@ struct IsSupportedType<T, std::enable_if_t<std::is_convertible_v<T*, id>>> {
// upside of this approach is that it will safely handle base::Bind closing over
// HANDLE. The downside of this approach is that base::Bind closing over a
// void* pointer will not get UaF protection.
#define PA_WINDOWS_HANDLE_TYPE(name) \
template <> \
struct IsSupportedType<name##__, void> { \
static constexpr bool value = false; \
};
#define PA_WINDOWS_HANDLE_TYPE(name) name##__,
#include "partition_alloc/partition_alloc_base/win/win_handle_types_list.inc"
#undef PA_WINDOWS_HANDLE_TYPE
#endif
// Performance-sensitive types identified via sampling profiler data;
// see crbug.com/1287151
base::internal::DelayTimerBase,
cc::Scheduler,
content::responsiveness::Calculator,
// Performance-sensitive types identified via speedometer3; see
// crbug.com/335556942
base::internal::JobTaskSource,
base::sequence_manager::internal::TaskQueueImpl,
blink::scheduler::MainThreadTaskQueue,
blink::scheduler::NonMainThreadTaskQueue,
mojo::Connector,
v8::JobTask,
// Performance-sensitive types identified via MotionMark; see
// crbug.com/335556942
cc::ImageDecodeCache,
cc::TextureLayerImpl>;
};
#if PA_BUILDFLAG(USE_RAW_PTR_BACKUP_REF_IMPL)
template <RawPtrTraits Traits>
@ -881,18 +850,27 @@ class PA_TRIVIAL_ABI PA_GSL_POINTER raw_ptr {
// perform safety checks with a higher runtime cost, so to avoid this, provide
// explicit comparison operators for all combinations of parameters.
// Comparisons between `raw_ptr`s. This unusual declaration and separate
// definition below is because `GetForComparison()` is a private method. The
// more conventional approach of defining a comparison operator between
// `raw_ptr` and `raw_ptr<U>` in the friend declaration itself does not work,
// because a comparison operator defined inline would not be allowed to call
// `raw_ptr<U>`'s private `GetForComparison()` method.
// Comparisons between `raw_ptr`s. Typically, these would be defined inline as
// comparisons between `raw_ptr` and `raw_ptr<U>`. Unfortunately, the friend
// declaration grants access to `raw_ptr::GetForComparison()`, but not
// `raw_ptr<U>::GetForComparison()`, since that's an unrelated type; both
// instantiations must declare the same signature as a friend for it to access
// both private methods. Switching to `raw_ptr<U>, raw_ptr<V>` achieves this,
// but then if the implementation is inline, the compile will generate it for
// both instantiations, and not know which (identical) instance to resolve to,
// causing a compile error. Thus the definitions must also be out-of-lined
// below, so they are only instantiated once.
template <typename U, typename V, RawPtrTraits R1, RawPtrTraits R2>
friend constexpr bool operator==(const raw_ptr<U, R1>& lhs,
const raw_ptr<V, R2>& rhs);
template <typename U, typename V, RawPtrTraits R1, RawPtrTraits R2>
friend constexpr bool operator!=(const raw_ptr<U, R1>& lhs,
const raw_ptr<V, R2>& rhs);
#if PA_HAVE_SPACESHIP_OPERATOR
template <typename U, typename V, RawPtrTraits R1, RawPtrTraits R2>
friend constexpr auto operator<=>(const raw_ptr<U, R1>& lhs,
const raw_ptr<V, R2>& rhs);
#else
template <typename U, typename V, RawPtrTraits R1, RawPtrTraits R2>
friend constexpr bool operator<(const raw_ptr<U, R1>& lhs,
const raw_ptr<V, R2>& rhs);
@ -905,9 +883,11 @@ class PA_TRIVIAL_ABI PA_GSL_POINTER raw_ptr {
template <typename U, typename V, RawPtrTraits R1, RawPtrTraits R2>
friend constexpr bool operator>=(const raw_ptr<U, R1>& lhs,
const raw_ptr<V, R2>& rhs);
#endif
// Comparisons with U*. These operators also handle the case where the RHS is
// T*.
// T*. Because these only call `raw_ptr::GetForComparison()`, they can be
// written inline in the typical way.
template <typename U>
PA_ALWAYS_INLINE friend constexpr bool operator==(const raw_ptr& lhs,
U* rhs) {
@ -928,6 +908,18 @@ class PA_TRIVIAL_ABI PA_GSL_POINTER raw_ptr {
const raw_ptr& rhs) {
return rhs != lhs; // Reverse order to call the operator above.
}
#if PA_HAVE_SPACESHIP_OPERATOR
template <typename U>
PA_ALWAYS_INLINE friend constexpr auto operator<=>(const raw_ptr& lhs,
U* rhs) {
return lhs.GetForComparison() <=> rhs;
}
template <typename U>
PA_ALWAYS_INLINE friend constexpr auto operator<=>(U* lhs,
const raw_ptr& rhs) {
return lhs <=> rhs.GetForComparison();
}
#else
template <typename U>
PA_ALWAYS_INLINE friend constexpr bool operator<(const raw_ptr& lhs, U* rhs) {
return lhs.GetForComparison() < rhs;
@ -964,6 +956,7 @@ class PA_TRIVIAL_ABI PA_GSL_POINTER raw_ptr {
const raw_ptr& rhs) {
return lhs >= rhs.GetForComparison();
}
#endif
// Comparisons with `std::nullptr_t`.
PA_ALWAYS_INLINE friend constexpr bool operator==(const raw_ptr& lhs,
@ -1040,6 +1033,13 @@ PA_ALWAYS_INLINE constexpr bool operator!=(const raw_ptr<U, Traits1>& lhs,
return !(lhs == rhs);
}
#if PA_HAVE_SPACESHIP_OPERATOR
template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
PA_ALWAYS_INLINE constexpr auto operator<=>(const raw_ptr<U, Traits1>& lhs,
const raw_ptr<V, Traits2>& rhs) {
return lhs.GetForComparison() <=> rhs.GetForComparison();
}
#else
template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
PA_ALWAYS_INLINE constexpr bool operator<(const raw_ptr<U, Traits1>& lhs,
const raw_ptr<V, Traits2>& rhs) {
@ -1063,53 +1063,35 @@ PA_ALWAYS_INLINE constexpr bool operator>=(const raw_ptr<U, Traits1>& lhs,
const raw_ptr<V, Traits2>& rhs) {
return lhs.GetForComparison() >= rhs.GetForComparison();
}
#endif
template <typename T>
struct IsRawPtr : std::false_type {};
inline constexpr bool IsRawPtr = false;
template <typename T, RawPtrTraits Traits>
struct IsRawPtr<raw_ptr<T, Traits>> : std::true_type {};
inline constexpr bool IsRawPtr<raw_ptr<T, Traits>> = true;
template <typename T>
inline constexpr bool IsRawPtrV = IsRawPtr<T>::value;
template <typename T>
inline constexpr bool IsRawPtrMayDangleV = false;
inline constexpr bool IsRawPtrMayDangle = false;
template <typename T, RawPtrTraits Traits>
inline constexpr bool IsRawPtrMayDangleV<raw_ptr<T, Traits>> =
inline constexpr bool IsRawPtrMayDangle<raw_ptr<T, Traits>> =
partition_alloc::internal::ContainsFlags(Traits, RawPtrTraits::kMayDangle);
// Template helpers for working with T* or raw_ptr<T>.
template <typename T>
struct IsRawPointerHelper : std::false_type {};
template <typename T>
struct IsRawPointerHelper<T*> : std::true_type {};
inline constexpr bool IsPointerOrRawPtr = std::is_pointer_v<T>;
template <typename T, RawPtrTraits Traits>
struct IsRawPointerHelper<raw_ptr<T, Traits>> : std::true_type {};
inline constexpr bool IsPointerOrRawPtr<raw_ptr<T, Traits>> = true;
// Like `std::remove_pointer_t<>`, but also converts `raw_ptr<T>` => `T`.
template <typename T>
inline constexpr bool IsRawPointer = IsRawPointerHelper<T>::value;
template <typename T>
struct RemoveRawPointer {
using type = T;
struct RemovePointer {
using type = std::remove_pointer_t<T>;
};
template <typename T>
struct RemoveRawPointer<T*> {
using type = T;
};
template <typename T, RawPtrTraits Traits>
struct RemoveRawPointer<raw_ptr<T, Traits>> {
struct RemovePointer<raw_ptr<T, Traits>> {
using type = T;
};
template <typename T>
using RemoveRawPointerT = typename RemoveRawPointer<T>::type;
using RemovePointerT = typename RemovePointer<T>::type;
} // namespace base
@ -1273,6 +1255,36 @@ struct pointer_traits<::raw_ptr<T, Traits>> {
}
};
// Mark `raw_ptr<T>` and `T*` as having a common reference type (the type to
// which both can be converted or bound) of `T*`. This makes them satisfy
// `std::equality_comparable`, which allows usage like:
// ```
// std::vector<raw_ptr<T>> v;
// T* e;
// auto it = std::ranges::find(v, e);
// ```
// Without this, the `find()` call above would fail to compile with a cryptic
// error about being unable to invoke `std::ranges::equal_to()`.
template <typename T,
base::RawPtrTraits Traits,
template <typename>
typename TQ,
template <typename>
typename UQ>
struct std::basic_common_reference<raw_ptr<T, Traits>, T*, TQ, UQ> {
using type = T*;
};
template <typename T,
base::RawPtrTraits Traits,
template <typename>
typename TQ,
template <typename>
typename UQ>
struct std::basic_common_reference<T*, raw_ptr<T, Traits>, TQ, UQ> {
using type = T*;
};
} // namespace std
#endif // PARTITION_ALLOC_POINTERS_RAW_PTR_H_

View file

@ -5,6 +5,7 @@
#include "partition_alloc/pointers/raw_ptr_asan_unowned_impl.h"
#include <sanitizer/asan_interface.h>
#include <cstdint>
#include "partition_alloc/partition_alloc_base/compiler_specific.h"

View file

@ -17,23 +17,19 @@
#include "partition_alloc/partition_alloc_config.h"
#include "partition_alloc/pointers/raw_ptr.h"
#if PA_HAVE_SPACESHIP_OPERATOR
#include <compare>
#endif
namespace base {
template <class T, RawPtrTraits Traits>
class raw_ref;
namespace internal {
template <class T>
struct is_raw_ref : std::false_type {};
inline constexpr bool IsRawRef = false;
template <class T, RawPtrTraits Traits>
struct is_raw_ref<::base::raw_ref<T, Traits>> : std::true_type {};
template <class T>
constexpr inline bool is_raw_ref_v = is_raw_ref<T>::value;
} // namespace internal
inline constexpr bool IsRawRef<::base::raw_ref<T, Traits>> = true;
// A smart pointer for a pointer which can not be null, and which provides
// Use-after-Free protection in the same ways as raw_ptr. This class acts like a
@ -224,86 +220,122 @@ class PA_TRIVIAL_ABI PA_GSL_POINTER raw_ref {
swap(lhs.inner_, rhs.inner_);
}
// See comments in raw_ptr.h for why these are declared with both arguments
// templated and defined out of line. Here the private access is to `inner_`
// rather than a method, but the issue is the same.
template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
friend bool operator==(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs);
friend constexpr bool operator==(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs);
template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
friend bool operator!=(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs);
friend constexpr bool operator!=(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs);
#if PA_HAVE_SPACESHIP_OPERATOR
template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
friend bool operator<(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs);
friend constexpr auto operator<=>(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs);
#else
template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
friend bool operator>(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs);
friend constexpr bool operator<(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs);
template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
friend bool operator<=(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs);
friend constexpr bool operator>(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs);
template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
friend bool operator>=(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs);
friend constexpr bool operator<=(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs);
template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
friend constexpr bool operator>=(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs);
#endif
template <class U, class = std::enable_if_t<!internal::is_raw_ref_v<U>, void>>
PA_ALWAYS_INLINE friend bool operator==(const raw_ref& lhs, const U& rhs) {
template <class U, class = std::enable_if_t<!IsRawRef<U>, void>>
PA_ALWAYS_INLINE friend constexpr bool operator==(const raw_ref& lhs,
const U& rhs) {
PA_RAW_PTR_CHECK(lhs.inner_); // Catch use-after-move.
return lhs.inner_ == &rhs;
}
template <class U, class = std::enable_if_t<!internal::is_raw_ref_v<U>, void>>
PA_ALWAYS_INLINE friend bool operator!=(const raw_ref& lhs, const U& rhs) {
template <class U, class = std::enable_if_t<!IsRawRef<U>, void>>
PA_ALWAYS_INLINE friend constexpr bool operator!=(const raw_ref& lhs,
const U& rhs) {
PA_RAW_PTR_CHECK(lhs.inner_); // Catch use-after-move.
return lhs.inner_ != &rhs;
}
template <class U, class = std::enable_if_t<!internal::is_raw_ref_v<U>, void>>
PA_ALWAYS_INLINE friend bool operator<(const raw_ref& lhs, const U& rhs) {
PA_RAW_PTR_CHECK(lhs.inner_); // Catch use-after-move.
return lhs.inner_ < &rhs;
}
template <class U, class = std::enable_if_t<!internal::is_raw_ref_v<U>, void>>
PA_ALWAYS_INLINE friend bool operator>(const raw_ref& lhs, const U& rhs) {
PA_RAW_PTR_CHECK(lhs.inner_); // Catch use-after-move.
return lhs.inner_ > &rhs;
}
template <class U, class = std::enable_if_t<!internal::is_raw_ref_v<U>, void>>
PA_ALWAYS_INLINE friend bool operator<=(const raw_ref& lhs, const U& rhs) {
PA_RAW_PTR_CHECK(lhs.inner_); // Catch use-after-move.
return lhs.inner_ <= &rhs;
}
template <class U, class = std::enable_if_t<!internal::is_raw_ref_v<U>, void>>
PA_ALWAYS_INLINE friend bool operator>=(const raw_ref& lhs, const U& rhs) {
PA_RAW_PTR_CHECK(lhs.inner_); // Catch use-after-move.
return lhs.inner_ >= &rhs;
}
template <class U, class = std::enable_if_t<!internal::is_raw_ref_v<U>, void>>
PA_ALWAYS_INLINE friend bool operator==(const U& lhs, const raw_ref& rhs) {
template <class U, class = std::enable_if_t<!IsRawRef<U>, void>>
PA_ALWAYS_INLINE friend constexpr bool operator==(const U& lhs,
const raw_ref& rhs) {
PA_RAW_PTR_CHECK(rhs.inner_); // Catch use-after-move.
return &lhs == rhs.inner_;
}
template <class U, class = std::enable_if_t<!internal::is_raw_ref_v<U>, void>>
PA_ALWAYS_INLINE friend bool operator!=(const U& lhs, const raw_ref& rhs) {
template <class U, class = std::enable_if_t<!IsRawRef<U>, void>>
PA_ALWAYS_INLINE friend constexpr bool operator!=(const U& lhs,
const raw_ref& rhs) {
PA_RAW_PTR_CHECK(rhs.inner_); // Catch use-after-move.
return &lhs != rhs.inner_;
}
template <class U, class = std::enable_if_t<!internal::is_raw_ref_v<U>, void>>
PA_ALWAYS_INLINE friend bool operator<(const U& lhs, const raw_ref& rhs) {
#if PA_HAVE_SPACESHIP_OPERATOR
template <class U, class = std::enable_if_t<!IsRawRef<U>, void>>
PA_ALWAYS_INLINE friend constexpr auto operator<=>(const raw_ref& lhs,
const U& rhs) {
PA_RAW_PTR_CHECK(lhs.inner_); // Catch use-after-move.
return lhs.inner_ <=> &rhs;
}
template <class U, class = std::enable_if_t<!IsRawRef<U>, void>>
PA_ALWAYS_INLINE friend constexpr auto operator<=>(const U& lhs,
const raw_ref& rhs) {
PA_RAW_PTR_CHECK(rhs.inner_); // Catch use-after-move.
return &lhs <=> rhs.inner_;
}
#else
template <class U, class = std::enable_if_t<!IsRawRef<U>, void>>
PA_ALWAYS_INLINE friend constexpr bool operator<(const raw_ref& lhs,
const U& rhs) {
PA_RAW_PTR_CHECK(lhs.inner_); // Catch use-after-move.
return lhs.inner_ < &rhs;
}
template <class U, class = std::enable_if_t<!IsRawRef<U>, void>>
PA_ALWAYS_INLINE friend constexpr bool operator>(const raw_ref& lhs,
const U& rhs) {
PA_RAW_PTR_CHECK(lhs.inner_); // Catch use-after-move.
return lhs.inner_ > &rhs;
}
template <class U, class = std::enable_if_t<!IsRawRef<U>, void>>
PA_ALWAYS_INLINE friend constexpr bool operator<=(const raw_ref& lhs,
const U& rhs) {
PA_RAW_PTR_CHECK(lhs.inner_); // Catch use-after-move.
return lhs.inner_ <= &rhs;
}
template <class U, class = std::enable_if_t<!IsRawRef<U>, void>>
PA_ALWAYS_INLINE friend constexpr bool operator>=(const raw_ref& lhs,
const U& rhs) {
PA_RAW_PTR_CHECK(lhs.inner_); // Catch use-after-move.
return lhs.inner_ >= &rhs;
}
template <class U, class = std::enable_if_t<!IsRawRef<U>, void>>
PA_ALWAYS_INLINE friend constexpr bool operator<(const U& lhs,
const raw_ref& rhs) {
PA_RAW_PTR_CHECK(rhs.inner_); // Catch use-after-move.
return &lhs < rhs.inner_;
}
template <class U, class = std::enable_if_t<!internal::is_raw_ref_v<U>, void>>
PA_ALWAYS_INLINE friend bool operator>(const U& lhs, const raw_ref& rhs) {
template <class U, class = std::enable_if_t<!IsRawRef<U>, void>>
PA_ALWAYS_INLINE friend constexpr bool operator>(const U& lhs,
const raw_ref& rhs) {
PA_RAW_PTR_CHECK(rhs.inner_); // Catch use-after-move.
return &lhs > rhs.inner_;
}
template <class U, class = std::enable_if_t<!internal::is_raw_ref_v<U>, void>>
PA_ALWAYS_INLINE friend bool operator<=(const U& lhs, const raw_ref& rhs) {
template <class U, class = std::enable_if_t<!IsRawRef<U>, void>>
PA_ALWAYS_INLINE friend constexpr bool operator<=(const U& lhs,
const raw_ref& rhs) {
PA_RAW_PTR_CHECK(rhs.inner_); // Catch use-after-move.
return &lhs <= rhs.inner_;
}
template <class U, class = std::enable_if_t<!internal::is_raw_ref_v<U>, void>>
PA_ALWAYS_INLINE friend bool operator>=(const U& lhs, const raw_ref& rhs) {
template <class U, class = std::enable_if_t<!IsRawRef<U>, void>>
PA_ALWAYS_INLINE friend constexpr bool operator>=(const U& lhs,
const raw_ref& rhs) {
PA_RAW_PTR_CHECK(rhs.inner_); // Catch use-after-move.
return &lhs >= rhs.inner_;
}
#endif
private:
template <class U, RawPtrTraits R>
@ -313,47 +345,57 @@ class PA_TRIVIAL_ABI PA_GSL_POINTER raw_ref {
};
template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
PA_ALWAYS_INLINE bool operator==(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs) {
PA_ALWAYS_INLINE constexpr bool operator==(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs) {
PA_RAW_PTR_CHECK(lhs.inner_); // Catch use-after-move.
PA_RAW_PTR_CHECK(rhs.inner_); // Catch use-after-move.
return lhs.inner_ == rhs.inner_;
}
template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
PA_ALWAYS_INLINE bool operator!=(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs) {
PA_ALWAYS_INLINE constexpr bool operator!=(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs) {
PA_RAW_PTR_CHECK(lhs.inner_); // Catch use-after-move.
PA_RAW_PTR_CHECK(rhs.inner_); // Catch use-after-move.
return lhs.inner_ != rhs.inner_;
}
#if PA_HAVE_SPACESHIP_OPERATOR
template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
PA_ALWAYS_INLINE bool operator<(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs) {
PA_ALWAYS_INLINE constexpr auto operator<=>(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs) {
PA_RAW_PTR_CHECK(lhs.inner_); // Catch use-after-move.
PA_RAW_PTR_CHECK(rhs.inner_); // Catch use-after-move.
return lhs.inner_ <=> rhs.inner_;
}
#else
template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
PA_ALWAYS_INLINE constexpr bool operator<(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs) {
PA_RAW_PTR_CHECK(lhs.inner_); // Catch use-after-move.
PA_RAW_PTR_CHECK(rhs.inner_); // Catch use-after-move.
return lhs.inner_ < rhs.inner_;
}
template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
PA_ALWAYS_INLINE bool operator>(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs) {
PA_ALWAYS_INLINE constexpr bool operator>(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs) {
PA_RAW_PTR_CHECK(lhs.inner_); // Catch use-after-move.
PA_RAW_PTR_CHECK(rhs.inner_); // Catch use-after-move.
return lhs.inner_ > rhs.inner_;
}
template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
PA_ALWAYS_INLINE bool operator<=(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs) {
PA_ALWAYS_INLINE constexpr bool operator<=(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs) {
PA_RAW_PTR_CHECK(lhs.inner_); // Catch use-after-move.
PA_RAW_PTR_CHECK(rhs.inner_); // Catch use-after-move.
return lhs.inner_ <= rhs.inner_;
}
template <typename U, typename V, RawPtrTraits Traits1, RawPtrTraits Traits2>
PA_ALWAYS_INLINE bool operator>=(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs) {
PA_ALWAYS_INLINE constexpr bool operator>=(const raw_ref<U, Traits1>& lhs,
const raw_ref<V, Traits2>& rhs) {
PA_RAW_PTR_CHECK(lhs.inner_); // Catch use-after-move.
PA_RAW_PTR_CHECK(rhs.inner_); // Catch use-after-move.
return lhs.inner_ >= rhs.inner_;
}
#endif
// CTAD deduction guide.
template <class T>
@ -361,26 +403,15 @@ raw_ref(T&) -> raw_ref<T>;
template <class T>
raw_ref(const T&) -> raw_ref<const T>;
// Template helpers for working with raw_ref<T>.
template <typename T>
struct IsRawRef : std::false_type {};
template <typename T, RawPtrTraits Traits>
struct IsRawRef<raw_ref<T, Traits>> : std::true_type {};
template <typename T>
inline constexpr bool IsRawRefV = IsRawRef<T>::value;
// Converts `raw_ref<T>` => `T`; leaves l/rvalue refs alone.
template <typename T>
struct RemoveRawRef {
using type = T;
};
template <typename T, RawPtrTraits Traits>
struct RemoveRawRef<raw_ref<T, Traits>> {
using type = T;
};
template <typename T>
using RemoveRawRefT = typename RemoveRawRef<T>::type;

View file

@ -23,9 +23,7 @@
namespace partition_alloc::internal {
namespace {
using PoolInfo = PartitionAddressSpace::PoolInfo;
}
class PoolOffsetFreelistEntry;

View file

@ -27,7 +27,7 @@ class RandomGenerator {
}
private:
::partition_alloc::internal::Lock lock_ = {};
::partition_alloc::internal::Lock lock_;
bool initialized_ PA_GUARDED_BY(lock_) = false;
union {
internal::base::InsecureRandomGenerator instance_ PA_GUARDED_BY(lock_);

View file

@ -8,7 +8,6 @@
#include <cstddef>
#include <cstdint>
#include <limits>
#include <tuple>
#include "partition_alloc/address_pool_manager.h"
#include "partition_alloc/build_config.h"

View file

@ -31,7 +31,6 @@
// noexcept needs to be routed to
// allocator_shim::internal::PartitionMallocUnchecked through the shim layer.
#include "partition_alloc/shim/allocator_shim_override_cpp_symbols.h"
#include "partition_alloc/shim/allocator_shim_override_libc_symbols.h"
// Some glibc versions (until commit 6c444ad6e953dbdf9c7be065308a0a777)

View file

@ -148,7 +148,11 @@ using SchedulerLoopQuarantine = partition_alloc::internal::base::
using ZappingByFreeFlags =
partition_alloc::internal::base::StrongAlias<class ZappingByFreeFlagsTag,
bool>;
using EventuallyZeroFreedMemory = partition_alloc::internal::base::
StrongAlias<class EventuallyZeroFreedMemoryTag, bool>;
using FewerMemoryRegions =
partition_alloc::internal::base::StrongAlias<class FewerMemoryRegionsTag,
bool>;
using UsePoolOffsetFreelists = partition_alloc::internal::base::
StrongAlias<class UsePoolOffsetFreelistsTag, bool>;
@ -161,12 +165,15 @@ using UseSmallSingleSlotSpans = partition_alloc::internal::base::
PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
void ConfigurePartitions(
EnableBrp enable_brp,
size_t brp_extra_extras_size,
EnableMemoryTagging enable_memory_tagging,
partition_alloc::TagViolationReportingMode memory_tagging_reporting_mode,
BucketDistribution distribution,
SchedulerLoopQuarantine scheduler_loop_quarantine,
size_t scheduler_loop_quarantine_branch_capacity_in_bytes,
ZappingByFreeFlags zapping_by_free_flags,
EventuallyZeroFreedMemory eventually_zero_freed_memory,
FewerMemoryRegions fewer_memory_regions,
UsePoolOffsetFreelists use_pool_offset_freelists,
UseSmallSingleSlotSpans use_small_single_slot_spans);

View file

@ -2,6 +2,9 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include <dlfcn.h>
#include <malloc.h>
#include <limits>
#include "partition_alloc/oom.h"
@ -9,9 +12,6 @@
#include "partition_alloc/partition_alloc_base/numerics/checked_math.h"
#include "partition_alloc/shim/allocator_shim.h"
#include <dlfcn.h>
#include <malloc.h>
// This translation unit defines a default dispatch for the allocator shim which
// routes allocations to libc functions.
// The code here is strongly inspired from tcmalloc's libc_override_glibc.h.

View file

@ -17,6 +17,7 @@
#include "partition_alloc/partition_alloc.h"
#include "partition_alloc/partition_alloc_base/bits.h"
#include "partition_alloc/partition_alloc_base/compiler_specific.h"
#include "partition_alloc/partition_alloc_base/export_template.h"
#include "partition_alloc/partition_alloc_base/no_destructor.h"
#include "partition_alloc/partition_alloc_base/numerics/checked_math.h"
#include "partition_alloc/partition_alloc_base/numerics/safe_conversions.h"
@ -25,6 +26,7 @@
#include "partition_alloc/partition_root.h"
#include "partition_alloc/partition_stats.h"
#include "partition_alloc/shim/allocator_dispatch.h"
#include "partition_alloc/shim/allocator_shim.h"
#include "partition_alloc/shim/allocator_shim_default_dispatch_to_partition_alloc_internal.h"
#include "partition_alloc/shim/allocator_shim_internals.h"
@ -100,7 +102,7 @@ class LeakySingleton {
__cpp_lib_atomic_value_initialization < 201911L
alignas(T) uint8_t instance_buffer_[sizeof(T)];
#else
alignas(T) uint8_t instance_buffer_[sizeof(T)] = {0};
alignas(T) uint8_t instance_buffer_[sizeof(T)] = {};
#endif
std::atomic<bool> initialization_lock_;
};
@ -147,7 +149,6 @@ class MainPartitionConstructor {
// the decision to turn the thread cache on until then.
// Also tests, such as the ThreadCache tests create a thread cache.
opts.thread_cache = partition_alloc::PartitionOptions::kDisabled;
opts.star_scan_quarantine = partition_alloc::PartitionOptions::kAllowed;
opts.backup_ref_ptr = partition_alloc::PartitionOptions::kDisabled;
auto* new_root = new (buffer) partition_alloc::PartitionRoot(opts);
@ -199,44 +200,67 @@ void* AllocateAlignedMemory(size_t alignment, size_t size) {
namespace allocator_shim::internal {
void* PartitionMalloc(size_t size, void* context) {
// static
template <partition_alloc::AllocFlags base_alloc_flags,
partition_alloc::FreeFlags base_free_flags>
void* PartitionAllocFunctionsInternal<base_alloc_flags,
base_free_flags>::Malloc(size_t size,
void* context) {
partition_alloc::ScopedDisallowAllocations guard{};
return Allocator()->AllocInline<partition_alloc::AllocFlags::kNoHooks>(size);
return Allocator()->AllocInline<base_alloc_flags>(size);
}
void* PartitionMallocUnchecked(size_t size, void* context) {
// static
template <partition_alloc::AllocFlags base_alloc_flags,
partition_alloc::FreeFlags base_free_flags>
void* PartitionAllocFunctionsInternal<base_alloc_flags, base_free_flags>::
MallocUnchecked(size_t size, void* context) {
partition_alloc::ScopedDisallowAllocations guard{};
return Allocator()
->AllocInline<partition_alloc::AllocFlags::kReturnNull |
partition_alloc::AllocFlags::kNoHooks>(size);
->AllocInline<base_alloc_flags |
partition_alloc::AllocFlags::kReturnNull>(size);
}
void* PartitionCalloc(size_t n, size_t size, void* context) {
// static
template <partition_alloc::AllocFlags base_alloc_flags,
partition_alloc::FreeFlags base_free_flags>
void* PartitionAllocFunctionsInternal<base_alloc_flags,
base_free_flags>::Calloc(size_t n,
size_t size,
void* context) {
partition_alloc::ScopedDisallowAllocations guard{};
const size_t total =
partition_alloc::internal::base::CheckMul(n, size).ValueOrDie();
return Allocator()
->AllocInline<partition_alloc::AllocFlags::kZeroFill |
partition_alloc::AllocFlags::kNoHooks>(total);
->AllocInline<base_alloc_flags | partition_alloc::AllocFlags::kZeroFill>(
total);
}
void* PartitionMemalign(size_t alignment, size_t size, void* context) {
// static
template <partition_alloc::AllocFlags base_alloc_flags,
partition_alloc::FreeFlags base_free_flags>
void* PartitionAllocFunctionsInternal<base_alloc_flags, base_free_flags>::
Memalign(size_t alignment, size_t size, void* context) {
partition_alloc::ScopedDisallowAllocations guard{};
return AllocateAlignedMemory<partition_alloc::AllocFlags::kNoHooks>(alignment,
size);
return AllocateAlignedMemory<base_alloc_flags>(alignment, size);
}
void* PartitionAlignedAlloc(size_t size, size_t alignment, void* context) {
// static
template <partition_alloc::AllocFlags base_alloc_flags,
partition_alloc::FreeFlags base_free_flags>
void* PartitionAllocFunctionsInternal<base_alloc_flags, base_free_flags>::
AlignedAlloc(size_t size, size_t alignment, void* context) {
partition_alloc::ScopedDisallowAllocations guard{};
return AllocateAlignedMemory<partition_alloc::AllocFlags::kNoHooks>(alignment,
size);
return AllocateAlignedMemory<base_alloc_flags>(alignment, size);
}
void* PartitionAlignedAllocUnchecked(size_t size,
size_t alignment,
void* context) {
// static
template <partition_alloc::AllocFlags base_alloc_flags,
partition_alloc::FreeFlags base_free_flags>
void* PartitionAllocFunctionsInternal<base_alloc_flags, base_free_flags>::
AlignedAllocUnchecked(size_t size, size_t alignment, void* context) {
partition_alloc::ScopedDisallowAllocations guard{};
return AllocateAlignedMemory<partition_alloc::AllocFlags::kNoHooks |
return AllocateAlignedMemory<base_alloc_flags |
partition_alloc::AllocFlags::kReturnNull>(
alignment, size);
}
@ -247,20 +271,23 @@ void* PartitionAlignedAllocUnchecked(size_t size,
// This realloc always free the original memory block and allocates a new memory
// block.
// TODO(tasak): Implement PartitionRoot::AlignedRealloc and use it.
void* PartitionAlignedRealloc(void* address,
size_t size,
size_t alignment,
void* context) {
// static
template <partition_alloc::AllocFlags base_alloc_flags,
partition_alloc::FreeFlags base_free_flags>
void* PartitionAllocFunctionsInternal<base_alloc_flags, base_free_flags>::
AlignedRealloc(void* address,
size_t size,
size_t alignment,
void* context) {
partition_alloc::ScopedDisallowAllocations guard{};
void* new_ptr = nullptr;
if (size > 0) {
new_ptr = AllocateAlignedMemory<partition_alloc::AllocFlags::kNoHooks>(
alignment, size);
new_ptr = AllocateAlignedMemory<base_alloc_flags>(alignment, size);
} else {
// size == 0 and address != null means just "free(address)".
if (address) {
partition_alloc::PartitionRoot::FreeInlineInUnknownRoot<
partition_alloc::FreeFlags::kNoHooks>(address);
partition_alloc::PartitionRoot::FreeInlineInUnknownRoot<base_free_flags>(
address);
}
}
// The original memory block (specified by address) is unchanged if ENOMEM.
@ -274,27 +301,31 @@ void* PartitionAlignedRealloc(void* address,
size_t copy_size = usage > size ? size : usage;
memcpy(new_ptr, address, copy_size);
partition_alloc::PartitionRoot::FreeInlineInUnknownRoot<
partition_alloc::FreeFlags::kNoHooks>(address);
partition_alloc::PartitionRoot::FreeInlineInUnknownRoot<base_free_flags>(
address);
}
return new_ptr;
}
void* PartitionAlignedReallocUnchecked(void* address,
size_t size,
size_t alignment,
void* context) {
// static
template <partition_alloc::AllocFlags base_alloc_flags,
partition_alloc::FreeFlags base_free_flags>
void* PartitionAllocFunctionsInternal<base_alloc_flags, base_free_flags>::
AlignedReallocUnchecked(void* address,
size_t size,
size_t alignment,
void* context) {
partition_alloc::ScopedDisallowAllocations guard{};
void* new_ptr = nullptr;
if (size > 0) {
new_ptr = AllocateAlignedMemory<partition_alloc::AllocFlags::kNoHooks |
new_ptr = AllocateAlignedMemory<base_alloc_flags |
partition_alloc::AllocFlags::kReturnNull>(
alignment, size);
} else {
// size == 0 and address != null means just "free(address)".
if (address) {
partition_alloc::PartitionRoot::FreeInlineInUnknownRoot<
partition_alloc::FreeFlags::kNoHooks>(address);
partition_alloc::PartitionRoot::FreeInlineInUnknownRoot<base_free_flags>(
address);
}
}
// The original memory block (specified by address) is unchanged if ENOMEM.
@ -308,17 +339,19 @@ void* PartitionAlignedReallocUnchecked(void* address,
size_t copy_size = usage > size ? size : usage;
memcpy(new_ptr, address, copy_size);
partition_alloc::PartitionRoot::FreeInlineInUnknownRoot<
partition_alloc::FreeFlags::kNoHooks>(address);
partition_alloc::PartitionRoot::FreeInlineInUnknownRoot<base_free_flags>(
address);
}
return new_ptr;
}
template <partition_alloc::AllocFlags alloc_flags,
partition_alloc::FreeFlags free_flags>
PA_ALWAYS_INLINE void* PartitionReallocInternal(void* address,
size_t size,
void* context) {
// static
template <partition_alloc::AllocFlags base_alloc_flags,
partition_alloc::FreeFlags base_free_flags>
void* PartitionAllocFunctionsInternal<base_alloc_flags,
base_free_flags>::Realloc(void* address,
size_t size,
void* context) {
partition_alloc::ScopedDisallowAllocations guard{};
#if PA_BUILDFLAG(IS_APPLE)
if (!partition_alloc::IsManagedByPartitionAlloc(
@ -331,26 +364,15 @@ PA_ALWAYS_INLINE void* PartitionReallocInternal(void* address,
}
#endif // PA_BUILDFLAG(IS_APPLE)
return Allocator()->Realloc<alloc_flags, free_flags>(address, size, "");
return Allocator()->Realloc<base_alloc_flags, base_free_flags>(address, size,
"");
}
void* PartitionRealloc(void* address, size_t size, void* context) {
return PartitionReallocInternal<partition_alloc::AllocFlags::kNoHooks,
partition_alloc::FreeFlags::kNone>(
address, size, context);
}
void* PartitionReallocWithAdvancedChecks(void* address,
size_t size,
void* context) {
return PartitionReallocInternal<
partition_alloc::AllocFlags::kNoHooks,
partition_alloc::FreeFlags::kNoHooks |
partition_alloc::FreeFlags::kSchedulerLoopQuarantine |
partition_alloc::FreeFlags::kZap>(address, size, context);
}
void* PartitionReallocUnchecked(void* address, size_t size, void* context) {
// static
template <partition_alloc::AllocFlags base_alloc_flags,
partition_alloc::FreeFlags base_free_flags>
void* PartitionAllocFunctionsInternal<base_alloc_flags, base_free_flags>::
ReallocUnchecked(void* address, size_t size, void* context) {
partition_alloc::ScopedDisallowAllocations guard{};
#if PA_BUILDFLAG(IS_APPLE)
if (!partition_alloc::IsManagedByPartitionAlloc(
@ -364,8 +386,8 @@ void* PartitionReallocUnchecked(void* address, size_t size, void* context) {
#endif // PA_BUILDFLAG(IS_APPLE)
return Allocator()
->Realloc<partition_alloc::AllocFlags::kNoHooks |
partition_alloc::AllocFlags::kReturnNull>(address, size, "");
->Realloc<base_alloc_flags | partition_alloc::AllocFlags::kReturnNull>(
address, size, "");
}
#if PA_BUILDFLAG(IS_CAST_ANDROID)
@ -374,8 +396,13 @@ void __real_free(void*);
} // extern "C"
#endif // PA_BUILDFLAG(IS_CAST_ANDROID)
template <partition_alloc::FreeFlags flags>
PA_ALWAYS_INLINE void PartitionFreeInternal(void* object, void* context) {
// static
template <partition_alloc::AllocFlags base_alloc_flags,
partition_alloc::FreeFlags base_free_flags>
PA_ALWAYS_INLINE void
PartitionAllocFunctionsInternal<base_alloc_flags, base_free_flags>::Free(
void* object,
void* context) {
partition_alloc::ScopedDisallowAllocations guard{};
#if PA_BUILDFLAG(IS_APPLE)
// TODO(bartekn): Add MTE unmasking here (and below).
@ -404,17 +431,8 @@ PA_ALWAYS_INLINE void PartitionFreeInternal(void* object, void* context) {
}
#endif // PA_BUILDFLAG(IS_CAST_ANDROID)
partition_alloc::PartitionRoot::FreeInlineInUnknownRoot<flags>(object);
}
void PartitionFree(void* object, void* context) {
PartitionFreeInternal<partition_alloc::FreeFlags::kNoHooks>(object, context);
}
void PartitionFreeWithAdvancedChecks(void* object, void* context) {
PartitionFreeInternal<partition_alloc::FreeFlags::kNoHooks |
partition_alloc::FreeFlags::kSchedulerLoopQuarantine |
partition_alloc::FreeFlags::kZap>(object, context);
partition_alloc::PartitionRoot::FreeInlineInUnknownRoot<base_free_flags>(
object);
}
#if PA_BUILDFLAG(IS_APPLE)
@ -424,16 +442,24 @@ void PartitionFreeWithAdvancedChecks(void* object, void* context) {
//
// So we don't need to re-check that the pointer is owned in Free(), and we
// can use the size.
void PartitionFreeDefiniteSize(void* address, size_t size, void* context) {
// static
template <partition_alloc::AllocFlags base_alloc_flags,
partition_alloc::FreeFlags base_free_flags>
void PartitionAllocFunctionsInternal<base_alloc_flags, base_free_flags>::
FreeDefiniteSize(void* address, size_t size, void* context) {
partition_alloc::ScopedDisallowAllocations guard{};
// TODO(lizeb): Optimize PartitionAlloc to use the size information. This is
// still useful though, as we avoid double-checking that the address is owned.
partition_alloc::PartitionRoot::FreeInlineInUnknownRoot<
partition_alloc::FreeFlags::kNoHooks>(address);
partition_alloc::PartitionRoot::FreeInlineInUnknownRoot<base_free_flags>(
address);
}
#endif // PA_BUILDFLAG(IS_APPLE)
size_t PartitionGetSizeEstimate(void* address, void* context) {
// static
template <partition_alloc::AllocFlags base_alloc_flags,
partition_alloc::FreeFlags base_free_flags>
size_t PartitionAllocFunctionsInternal<base_alloc_flags, base_free_flags>::
GetSizeEstimate(void* address, void* context) {
// This is used to implement malloc_usable_size(3). Per its man page, "if ptr
// is NULL, 0 is returned".
if (!address) {
@ -464,43 +490,64 @@ size_t PartitionGetSizeEstimate(void* address, void* context) {
}
#if PA_BUILDFLAG(IS_APPLE)
size_t PartitionGoodSize(size_t size, void* context) {
// static
template <partition_alloc::AllocFlags base_alloc_flags,
partition_alloc::FreeFlags base_free_flags>
size_t
PartitionAllocFunctionsInternal<base_alloc_flags, base_free_flags>::GoodSize(
size_t size,
void* context) {
return Allocator()->AllocationCapacityFromRequestedSize(size);
}
bool PartitionClaimedAddress(void* address, void* context) {
// static
template <partition_alloc::AllocFlags base_alloc_flags,
partition_alloc::FreeFlags base_free_flags>
bool PartitionAllocFunctionsInternal<base_alloc_flags, base_free_flags>::
ClaimedAddress(void* address, void* context) {
return partition_alloc::IsManagedByPartitionAlloc(
reinterpret_cast<uintptr_t>(address));
}
#endif // PA_BUILDFLAG(IS_APPLE)
unsigned PartitionBatchMalloc(size_t size,
void** results,
unsigned num_requested,
void* context) {
// static
template <partition_alloc::AllocFlags base_alloc_flags,
partition_alloc::FreeFlags base_free_flags>
unsigned
PartitionAllocFunctionsInternal<base_alloc_flags, base_free_flags>::BatchMalloc(
size_t size,
void** results,
unsigned num_requested,
void* context) {
// No real batching: we could only acquire the lock once for instance, keep it
// simple for now.
for (unsigned i = 0; i < num_requested; i++) {
// No need to check the results, we crash if it fails.
results[i] = PartitionMalloc(size, nullptr);
results[i] = Malloc(size, nullptr);
}
// Either all succeeded, or we crashed.
return num_requested;
}
void PartitionBatchFree(void** to_be_freed,
unsigned num_to_be_freed,
void* context) {
// static
template <partition_alloc::AllocFlags base_alloc_flags,
partition_alloc::FreeFlags base_free_flags>
void PartitionAllocFunctionsInternal<base_alloc_flags, base_free_flags>::
BatchFree(void** to_be_freed, unsigned num_to_be_freed, void* context) {
// No real batching: we could only acquire the lock once for instance, keep it
// simple for now.
for (unsigned i = 0; i < num_to_be_freed; i++) {
PartitionFree(to_be_freed[i], nullptr);
Free(to_be_freed[i], nullptr);
}
}
#if PA_BUILDFLAG(IS_APPLE)
void PartitionTryFreeDefault(void* address, void* context) {
// static
template <partition_alloc::AllocFlags base_alloc_flags,
partition_alloc::FreeFlags base_free_flags>
void PartitionAllocFunctionsInternal<base_alloc_flags, base_free_flags>::
TryFreeDefault(void* address, void* context) {
partition_alloc::ScopedDisallowAllocations guard{};
if (!partition_alloc::IsManagedByPartitionAlloc(
@ -510,11 +557,22 @@ void PartitionTryFreeDefault(void* address, void* context) {
return allocator_shim::TryFreeDefaultFallbackToFindZoneAndFree(address);
}
partition_alloc::PartitionRoot::FreeInlineInUnknownRoot<
partition_alloc::FreeFlags::kNoHooks>(address);
partition_alloc::PartitionRoot::FreeInlineInUnknownRoot<base_free_flags>(
address);
}
#endif // PA_BUILDFLAG(IS_APPLE)
// Explicitly instantiate `PartitionAllocFunctions`.
template class PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
PartitionAllocFunctionsInternal<partition_alloc::AllocFlags::kNoHooks,
partition_alloc::FreeFlags::kNoHooks>;
// Explicitly instantiate `PartitionAllocWithAdvancedChecksFunctions`.
template class PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
PartitionAllocFunctionsInternal<
partition_alloc::AllocFlags::kNoHooks,
partition_alloc::FreeFlags::kNoHooks |
partition_alloc::FreeFlags::kSchedulerLoopQuarantine>;
// static
bool PartitionAllocMalloc::AllocatorConfigurationFinalized() {
return ::AllocatorConfigurationFinalized();
@ -553,12 +611,15 @@ void EnablePartitionAllocMemoryReclaimer() {
void ConfigurePartitions(
EnableBrp enable_brp,
size_t brp_extra_extras_size,
EnableMemoryTagging enable_memory_tagging,
partition_alloc::TagViolationReportingMode memory_tagging_reporting_mode,
BucketDistribution distribution,
SchedulerLoopQuarantine scheduler_loop_quarantine,
size_t scheduler_loop_quarantine_branch_capacity_in_bytes,
ZappingByFreeFlags zapping_by_free_flags,
EventuallyZeroFreedMemory eventually_zero_freed_memory,
FewerMemoryRegions fewer_memory_regions,
UsePoolOffsetFreelists use_pool_offset_freelists,
UseSmallSingleSlotSpans use_small_single_slot_spans) {
// Calling Get() is actually important, even if the return value isn't
@ -574,20 +635,27 @@ void ConfigurePartitions(
// shouldn't bite us here. Mentioning just in case we move this code earlier.
static partition_alloc::internal::base::NoDestructor<
partition_alloc::PartitionAllocator>
new_main_allocator([&]() {
new_main_allocator([&] {
partition_alloc::PartitionOptions opts;
// The caller of ConfigurePartitions() will decide whether this or
// another partition will have the thread cache enabled, by calling
// EnableThreadCacheIfSupported().
opts.thread_cache = partition_alloc::PartitionOptions::kDisabled;
opts.star_scan_quarantine = partition_alloc::PartitionOptions::kAllowed;
opts.backup_ref_ptr =
enable_brp ? partition_alloc::PartitionOptions::kEnabled
: partition_alloc::PartitionOptions::kDisabled;
opts.backup_ref_ptr_extra_extras_size = brp_extra_extras_size;
opts.zapping_by_free_flags =
zapping_by_free_flags
? partition_alloc::PartitionOptions::kEnabled
: partition_alloc::PartitionOptions::kDisabled;
opts.eventually_zero_freed_memory =
eventually_zero_freed_memory
? partition_alloc::PartitionOptions::kEnabled
: partition_alloc::PartitionOptions::kDisabled;
opts.fewer_memory_regions =
fewer_memory_regions ? partition_alloc::PartitionOptions::kEnabled
: partition_alloc::PartitionOptions::kDisabled;
opts.scheduler_loop_quarantine =
scheduler_loop_quarantine
? partition_alloc::PartitionOptions::kEnabled
@ -675,7 +743,7 @@ SHIM_ALWAYS_EXPORT int mallopt(int cmd, int value) __THROW {
#endif // !PA_BUILDFLAG(IS_APPLE) && !PA_BUILDFLAG(IS_ANDROID)
#if defined(__MUSL__)
#if defined(__MUSL__)
// Musl does not support struct mallinfo.
#elif PA_BUILDFLAG(IS_LINUX) || PA_BUILDFLAG(IS_CHROMEOS)
SHIM_ALWAYS_EXPORT struct mallinfo mallinfo(void) __THROW {

View file

@ -10,6 +10,7 @@
#if PA_BUILDFLAG(USE_ALLOCATOR_SHIM)
#include "partition_alloc/partition_alloc.h"
#include "partition_alloc/partition_alloc_base/component_export.h"
#include "partition_alloc/shim/allocator_dispatch.h"
#include "partition_alloc/shim/allocator_shim.h"
namespace allocator_shim {
@ -27,87 +28,126 @@ class PA_COMPONENT_EXPORT(ALLOCATOR_SHIM) PartitionAllocMalloc {
static partition_alloc::PartitionRoot* OriginalAllocator();
};
PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
void* PartitionMalloc(size_t size, void* context);
template <partition_alloc::AllocFlags base_alloc_flags,
partition_alloc::FreeFlags base_free_flags>
class PartitionAllocFunctionsInternal {
public:
static void* Malloc(size_t size, void* context);
PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
void* PartitionMallocUnchecked(size_t size, void* context);
static void* MallocUnchecked(size_t size, void* context);
PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
void* PartitionCalloc(size_t n, size_t size, void* context);
static void* Calloc(size_t n, size_t size, void* context);
PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
void* PartitionMemalign(size_t alignment, size_t size, void* context);
static void* Memalign(size_t alignment, size_t size, void* context);
PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
void* PartitionAlignedAlloc(size_t size, size_t alignment, void* context);
static void* AlignedAlloc(size_t size, size_t alignment, void* context);
PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
void* PartitionAlignedAllocUnchecked(size_t size,
static void* AlignedAllocUnchecked(size_t size,
size_t alignment,
void* context);
PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
void* PartitionAlignedRealloc(void* address,
static void* AlignedRealloc(void* address,
size_t size,
size_t alignment,
void* context);
PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
void* PartitionAlignedReallocUnchecked(void* address,
static void* AlignedReallocUnchecked(void* address,
size_t size,
size_t alignment,
void* context);
PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
void* PartitionRealloc(void* address, size_t size, void* context);
static void* Realloc(void* address, size_t size, void* context);
PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
void* PartitionReallocWithAdvancedChecks(void* address,
size_t size,
void* context);
static void* ReallocUnchecked(void* address, size_t size, void* context);
PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
void* PartitionReallocUnchecked(void* address, size_t size, void* context);
PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
void PartitionFree(void* object, void* context);
PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
void PartitionFreeWithAdvancedChecks(void* object, void* context);
static void Free(void* object, void* context);
#if PA_BUILDFLAG(IS_APPLE)
PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
void PartitionFreeDefiniteSize(void* address, size_t size, void* context);
static void FreeDefiniteSize(void* address, size_t size, void* context);
#endif // PA_BUILDFLAG(IS_APPLE)
PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
size_t PartitionGetSizeEstimate(void* address, void* context);
static size_t GetSizeEstimate(void* address, void* context);
#if PA_BUILDFLAG(IS_APPLE)
PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
size_t PartitionGoodSize(size_t size, void* context);
static size_t GoodSize(size_t size, void* context);
PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
bool PartitionClaimedAddress(void* address, void* context);
static bool ClaimedAddress(void* address, void* context);
#endif // PA_BUILDFLAG(IS_APPLE)
PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
unsigned PartitionBatchMalloc(size_t size,
static unsigned BatchMalloc(size_t size,
void** results,
unsigned num_requested,
void* context);
PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
void PartitionBatchFree(void** to_be_freed,
static void BatchFree(void** to_be_freed,
unsigned num_to_be_freed,
void* context);
#if PA_BUILDFLAG(IS_APPLE)
PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
void PartitionTryFreeDefault(void* address, void* context);
static void TryFreeDefault(void* address, void* context);
#endif // PA_BUILDFLAG(IS_APPLE)
static constexpr AllocatorDispatch MakeDispatch() {
return {
&Malloc, // alloc_function
&MallocUnchecked, // alloc_unchecked_function
&Calloc, // alloc_zero_initialized_function
&Memalign, // alloc_aligned_function
&Realloc, // realloc_function
&ReallocUnchecked, // realloc_unchecked_function
&Free, // free_function
&GetSizeEstimate, // get_size_estimate_function
#if PA_BUILDFLAG(IS_APPLE)
&GoodSize, // good_size
&ClaimedAddress, // claimed_address
#else
nullptr, // good_size
nullptr, // claimed_address
#endif
&BatchMalloc, // batch_malloc_function
&BatchFree, // batch_free_function
#if PA_BUILDFLAG(IS_APPLE)
// On Apple OSes, free_definite_size() is always called from free(),
// since get_size_estimate() is used to determine whether an allocation
// belongs to the current zone. It makes sense to optimize for it.
&FreeDefiniteSize,
// On Apple OSes, try_free_default() is sometimes called as an
// optimization of free().
&TryFreeDefault,
#else
nullptr, // free_definite_size_function
nullptr, // try_free_default_function
#endif
&AlignedAlloc, // aligned_malloc_function
&AlignedAllocUnchecked, // aligned_malloc_unchecked_function
&AlignedRealloc, // aligned_realloc_function
&AlignedReallocUnchecked, // aligned_realloc_unchecked_function
&Free, // aligned_free_function
nullptr, // next
};
}
};
using PartitionAllocFunctions =
PartitionAllocFunctionsInternal<partition_alloc::AllocFlags::kNoHooks,
partition_alloc::FreeFlags::kNoHooks>;
using PartitionAllocWithAdvancedChecksFunctions =
PartitionAllocFunctionsInternal<
partition_alloc::AllocFlags::kNoHooks,
partition_alloc::FreeFlags::kNoHooks |
partition_alloc::FreeFlags::kSchedulerLoopQuarantine>;
// `PartitionAllocFunctions` in instantiated in cc file.
extern template class PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
PartitionAllocFunctionsInternal<partition_alloc::AllocFlags::kNoHooks,
partition_alloc::FreeFlags::kNoHooks>;
// `PartitionAllocWithAdvancedChecksFunctions` in instantiated in cc file.
extern template class PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
PartitionAllocFunctionsInternal<
partition_alloc::AllocFlags::kNoHooks,
partition_alloc::FreeFlags::kNoHooks |
partition_alloc::FreeFlags::kSchedulerLoopQuarantine>;
} // namespace internal
#if PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)
@ -122,6 +162,7 @@ void PartitionTryFreeDefault(void* address, void* context);
// this function. They should call ConfigurePartitions() directly.
PA_ALWAYS_INLINE void ConfigurePartitionsForTesting() {
auto enable_brp = allocator_shim::EnableBrp(true);
size_t brp_extra_extras_size = 0;
// Embedders's tests might benefit from MTE checks. However, this is costly
// and shouldn't be used in benchmarks.
@ -138,13 +179,16 @@ PA_ALWAYS_INLINE void ConfigurePartitionsForTesting() {
auto scheduler_loop_quarantine = SchedulerLoopQuarantine(false);
size_t scheduler_loop_quarantine_capacity_in_bytes = 0;
auto zapping_by_free_flags = ZappingByFreeFlags(false);
auto eventually_zero_freed_memory = EventuallyZeroFreedMemory(false);
auto fewer_memory_regions = FewerMemoryRegions(false);
auto use_pool_offset_freelists = UsePoolOffsetFreelists(true);
auto use_small_single_slot_spans = UseSmallSingleSlotSpans(true);
ConfigurePartitions(
enable_brp, enable_memory_tagging, memory_tagging_reporting_mode,
distribution, scheduler_loop_quarantine,
enable_brp, brp_extra_extras_size, enable_memory_tagging,
memory_tagging_reporting_mode, distribution, scheduler_loop_quarantine,
scheduler_loop_quarantine_capacity_in_bytes, zapping_by_free_flags,
eventually_zero_freed_memory, fewer_memory_regions,
use_pool_offset_freelists, use_small_single_slot_spans);
}
#endif // PA_BUILDFLAG(USE_PARTITION_ALLOC_AS_MALLOC)

View file

@ -16,51 +16,8 @@ namespace allocator_shim::internal {
// PartitionMalloc, PartitionMallocUnchecked, ... are DLL-exported when
// is_component_build=true and is_win=true. In the case, the other component
// needs to import the symbols from allocator_shim.dll...so, not constexpr.
inline constexpr AllocatorDispatch kPartitionAllocDispatch = {
&allocator_shim::internal::PartitionMalloc, // alloc_function
&allocator_shim::internal::
PartitionMallocUnchecked, // alloc_unchecked_function
&allocator_shim::internal::
PartitionCalloc, // alloc_zero_initialized_function
&allocator_shim::internal::PartitionMemalign, // alloc_aligned_function
&allocator_shim::internal::PartitionRealloc, // realloc_function
&allocator_shim::internal::
PartitionReallocUnchecked, // realloc_unchecked_function
&allocator_shim::internal::PartitionFree, // free_function
&allocator_shim::internal::
PartitionGetSizeEstimate, // get_size_estimate_function
#if PA_BUILDFLAG(IS_APPLE)
&allocator_shim::internal::PartitionGoodSize, // good_size
&allocator_shim::internal::PartitionClaimedAddress, // claimed_address
#else
nullptr, // good_size
nullptr, // claimed_address
#endif
&allocator_shim::internal::PartitionBatchMalloc, // batch_malloc_function
&allocator_shim::internal::PartitionBatchFree, // batch_free_function
#if PA_BUILDFLAG(IS_APPLE)
// On Apple OSes, free_definite_size() is always called from free(), since
// get_size_estimate() is used to determine whether an allocation belongs to
// the current zone. It makes sense to optimize for it.
&allocator_shim::internal::PartitionFreeDefiniteSize,
// On Apple OSes, try_free_default() is sometimes called as an optimization
// of free().
&allocator_shim::internal::PartitionTryFreeDefault,
#else
nullptr, // free_definite_size_function
nullptr, // try_free_default_function
#endif
&allocator_shim::internal::
PartitionAlignedAlloc, // aligned_malloc_function
&allocator_shim::internal::
PartitionAlignedAllocUnchecked, // aligned_malloc_unchecked_function
&allocator_shim::internal::
PartitionAlignedRealloc, // aligned_realloc_function
&allocator_shim::internal::
PartitionAlignedReallocUnchecked, // aligned_realloc_unchecked_function
&allocator_shim::internal::PartitionFree, // aligned_free_function
nullptr, // next
};
inline constexpr AllocatorDispatch kPartitionAllocDispatch =
allocator_shim::internal::PartitionAllocFunctions::MakeDispatch();
} // namespace allocator_shim::internal

View file

@ -20,34 +20,152 @@ std::atomic<const AllocatorDispatch*> g_delegate_dispatch =
PA_ALWAYS_INLINE const AllocatorDispatch* GetDelegate() {
return g_delegate_dispatch.load(std::memory_order_relaxed);
}
void* DelegatedAllocFn(size_t size, void* context) {
const AllocatorDispatch* delegate = GetDelegate();
PA_MUSTTAIL return delegate->alloc_function(size, context);
}
void* DelegatedAllocUncheckedFn(size_t size, void* context) {
const AllocatorDispatch* delegate = GetDelegate();
PA_MUSTTAIL return delegate->alloc_unchecked_function(size, context);
}
void* DelegatedAllocZeroInitializedFn(size_t n, size_t size, void* context) {
const AllocatorDispatch* delegate = GetDelegate();
PA_MUSTTAIL return delegate->alloc_zero_initialized_function(n, size,
context);
}
void* DelegatedAllocAlignedFn(size_t alignment, size_t size, void* context) {
const AllocatorDispatch* delegate = GetDelegate();
PA_MUSTTAIL return delegate->alloc_aligned_function(alignment, size, context);
}
void* DelegatedReallocFn(void* address, size_t size, void* context) {
const AllocatorDispatch* delegate = GetDelegate();
PA_MUSTTAIL return delegate->realloc_function(address, size, context);
}
void* DelegatedReallocUncheckedFn(void* address, size_t size, void* context) {
const AllocatorDispatch* delegate = GetDelegate();
PA_MUSTTAIL return delegate->realloc_unchecked_function(address, size,
context);
}
void DelegatedFreeFn(void* address, void* context) {
const AllocatorDispatch* delegate = GetDelegate();
PA_MUSTTAIL return delegate->free_function(address, context);
}
size_t DelegatedGetSizeEstimateFn(void* address, void* context) {
const AllocatorDispatch* delegate = GetDelegate();
PA_MUSTTAIL return delegate->get_size_estimate_function(address, context);
}
size_t DelegatedGoodSizeFn(size_t size, void* context) {
const AllocatorDispatch* delegate = GetDelegate();
PA_MUSTTAIL return delegate->good_size_function(size, context);
}
bool DelegatedClaimedAddressFn(void* address, void* context) {
const AllocatorDispatch* delegate = GetDelegate();
PA_MUSTTAIL return delegate->claimed_address_function(address, context);
}
unsigned DelegatedBatchMallocFn(size_t size,
void** results,
unsigned num_requested,
void* context) {
const AllocatorDispatch* delegate = GetDelegate();
PA_MUSTTAIL return delegate->batch_malloc_function(size, results,
num_requested, context);
}
void DelegatedBatchFreeFn(void** to_be_freed,
unsigned num_to_be_freed,
void* context) {
const AllocatorDispatch* delegate = GetDelegate();
PA_MUSTTAIL return delegate->batch_free_function(to_be_freed, num_to_be_freed,
context);
}
void DelegatedFreeDefiniteSizeFn(void* address, size_t size, void* context) {
const AllocatorDispatch* delegate = GetDelegate();
PA_MUSTTAIL return delegate->free_definite_size_function(address, size,
context);
}
void DelegatedTryFreeDefaultFn(void* address, void* context) {
const AllocatorDispatch* delegate = GetDelegate();
PA_MUSTTAIL return delegate->try_free_default_function(address, context);
}
void* DelegatedAlignedMallocFn(size_t size, size_t alignment, void* context) {
const AllocatorDispatch* delegate = GetDelegate();
PA_MUSTTAIL return delegate->aligned_malloc_function(size, alignment,
context);
}
void* DelegatedAlignedMallocUncheckedFn(size_t size,
size_t alignment,
void* context) {
const AllocatorDispatch* delegate = GetDelegate();
PA_MUSTTAIL return delegate->aligned_malloc_unchecked_function(
size, alignment, context);
}
void* DelegatedAlignedReallocFn(void* address,
size_t size,
size_t alignment,
void* context) {
const AllocatorDispatch* delegate = GetDelegate();
PA_MUSTTAIL return delegate->aligned_realloc_function(address, size,
alignment, context);
}
void* DelegatedAlignedReallocUncheckedFn(void* address,
size_t size,
size_t alignment,
void* context) {
const AllocatorDispatch* delegate = GetDelegate();
PA_MUSTTAIL return delegate->aligned_realloc_unchecked_function(
address, size, alignment, context);
}
void DelegatedAlignedFreeFn(void* address, void* context) {
const AllocatorDispatch* delegate = GetDelegate();
PA_MUSTTAIL return delegate->aligned_free_function(address, context);
}
} // namespace
void InstallDispatchToPartitionAllocWithAdvancedChecks(
AllocatorDispatch* dispatch) {
void InstallCustomDispatch(AllocatorDispatch* dispatch) {
PA_DCHECK(dispatch);
// Must have followings:
PA_DCHECK(dispatch->alloc_function != nullptr);
PA_DCHECK(dispatch->alloc_unchecked_function != nullptr);
PA_DCHECK(dispatch->alloc_zero_initialized_function != nullptr);
PA_DCHECK(dispatch->alloc_aligned_function != nullptr);
PA_DCHECK(dispatch->realloc_function != nullptr);
PA_DCHECK(dispatch->realloc_unchecked_function != nullptr);
PA_DCHECK(dispatch->free_function != nullptr);
// Must not have followings:
PA_DCHECK(dispatch->alloc_function == nullptr);
PA_DCHECK(dispatch->alloc_unchecked_function == nullptr);
PA_DCHECK(dispatch->alloc_zero_initialized_function == nullptr);
PA_DCHECK(dispatch->alloc_aligned_function == nullptr);
PA_DCHECK(dispatch->realloc_unchecked_function == nullptr);
PA_DCHECK(dispatch->get_size_estimate_function == nullptr);
PA_DCHECK(dispatch->good_size_function == nullptr);
PA_DCHECK(dispatch->claimed_address_function == nullptr);
PA_DCHECK(dispatch->batch_malloc_function == nullptr);
PA_DCHECK(dispatch->batch_free_function == nullptr);
PA_DCHECK(dispatch->free_definite_size_function == nullptr);
PA_DCHECK(dispatch->try_free_default_function == nullptr);
PA_DCHECK(dispatch->aligned_malloc_function == nullptr);
PA_DCHECK(dispatch->aligned_malloc_unchecked_function == nullptr);
PA_DCHECK(dispatch->aligned_realloc_function == nullptr);
PA_DCHECK(dispatch->aligned_realloc_unchecked_function == nullptr);
PA_DCHECK(dispatch->aligned_free_function == nullptr);
PA_DCHECK(dispatch->get_size_estimate_function != nullptr);
#if PA_BUILDFLAG(IS_APPLE)
PA_DCHECK(dispatch->good_size_function != nullptr);
PA_DCHECK(dispatch->claimed_address_function != nullptr);
#endif // PA_BUILDFLAG(IS_APPLE)
PA_DCHECK(dispatch->batch_malloc_function != nullptr);
PA_DCHECK(dispatch->batch_free_function != nullptr);
#if PA_BUILDFLAG(IS_APPLE)
PA_DCHECK(dispatch->free_definite_size_function != nullptr);
PA_DCHECK(dispatch->try_free_default_function != nullptr);
#endif // PA_BUILDFLAG(IS_APPLE)
PA_DCHECK(dispatch->aligned_malloc_function != nullptr);
PA_DCHECK(dispatch->aligned_malloc_unchecked_function != nullptr);
PA_DCHECK(dispatch->aligned_realloc_function != nullptr);
PA_DCHECK(dispatch->aligned_realloc_unchecked_function != nullptr);
PA_DCHECK(dispatch->aligned_free_function != nullptr);
dispatch->next = &internal::kPartitionAllocDispatch;
@ -65,30 +183,46 @@ void InstallDispatchToPartitionAllocWithAdvancedChecks(
#endif // PA_BUILDFLAG(DCHECKS_ARE_ON)
}
void UninstallDispatchToPartitionAllocWithAdvancedChecks() {
void InstallCustomDispatchForTesting(AllocatorDispatch* dispatch) {
InstallCustomDispatch(dispatch);
}
void InstallCustomDispatchForPartitionAllocWithAdvancedChecks() {
PA_CONSTINIT static AllocatorDispatch dispatch = []() constexpr {
auto dispatch =
internal::PartitionAllocWithAdvancedChecksFunctions::MakeDispatch();
dispatch.next = &internal::kPartitionAllocDispatch;
return dispatch;
}();
InstallCustomDispatch(&dispatch);
}
void UninstallCustomDispatch() {
g_delegate_dispatch.store(&internal::kPartitionAllocDispatch,
std::memory_order_relaxed);
}
namespace internal {
void FreeWithAdvancedChecks(void* address, void* context) {
const AllocatorDispatch* delegate = GetDelegate();
PA_MUSTTAIL return delegate->free_function(address, context);
}
void* ReallocWithAdvancedChecks(void* address, size_t size, void* context) {
const AllocatorDispatch* delegate = GetDelegate();
PA_MUSTTAIL return delegate->realloc_function(address, size, context);
}
} // namespace internal
const AllocatorDispatch AllocatorDispatch::default_dispatch = []() constexpr {
AllocatorDispatch dispatch = internal::kPartitionAllocDispatch;
dispatch.realloc_function = &internal::ReallocWithAdvancedChecks;
dispatch.free_function = &internal::FreeWithAdvancedChecks;
return dispatch;
}();
const AllocatorDispatch AllocatorDispatch::default_dispatch = {
.alloc_function = &DelegatedAllocFn,
.alloc_unchecked_function = &DelegatedAllocUncheckedFn,
.alloc_zero_initialized_function = &DelegatedAllocZeroInitializedFn,
.alloc_aligned_function = &DelegatedAllocAlignedFn,
.realloc_function = &DelegatedReallocFn,
.realloc_unchecked_function = &DelegatedReallocUncheckedFn,
.free_function = &DelegatedFreeFn,
.get_size_estimate_function = &DelegatedGetSizeEstimateFn,
.good_size_function = &DelegatedGoodSizeFn,
.claimed_address_function = &DelegatedClaimedAddressFn,
.batch_malloc_function = &DelegatedBatchMallocFn,
.batch_free_function = &DelegatedBatchFreeFn,
.free_definite_size_function = &DelegatedFreeDefiniteSizeFn,
.try_free_default_function = &DelegatedTryFreeDefaultFn,
.aligned_malloc_function = &DelegatedAlignedMallocFn,
.aligned_malloc_unchecked_function = &DelegatedAlignedMallocUncheckedFn,
.aligned_realloc_function = &DelegatedAlignedReallocFn,
.aligned_realloc_unchecked_function = &DelegatedAlignedReallocUncheckedFn,
.aligned_free_function = &DelegatedAlignedFreeFn,
.next = nullptr,
};
} // namespace allocator_shim

View file

@ -32,11 +32,13 @@
namespace allocator_shim {
PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
void InstallDispatchToPartitionAllocWithAdvancedChecks(
AllocatorDispatch* dispatch);
void InstallCustomDispatchForPartitionAllocWithAdvancedChecks();
PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
void UninstallDispatchToPartitionAllocWithAdvancedChecks();
void InstallCustomDispatchForTesting(AllocatorDispatch* dispatch);
PA_COMPONENT_EXPORT(ALLOCATOR_SHIM)
void UninstallCustomDispatch();
} // namespace allocator_shim

View file

@ -2,11 +2,10 @@
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.
#include "partition_alloc/shim/allocator_shim.h"
#include <ostream>
#include "partition_alloc/partition_alloc_check.h"
#include "partition_alloc/shim/allocator_shim.h"
#include "partition_alloc/shim/winheap_stubs_win.h"
namespace {

View file

@ -28,6 +28,13 @@
namespace allocator_shim {
// This ".h" file is not a header, but a source file meant to be included only
// once, exclusively from allocator_shim.cc. See the top-level check.
//
// A possible alternative: rename this file to .inc, at the expense of losing
// syntax highlighting in text editors.
//
// NOLINTNEXTLINE(google-build-namespaces)
namespace {
// malloc_introspection_t's callback functions for our own zone
@ -319,6 +326,14 @@ void InitializeZone() {
#endif
}
// This ".h" file is not a header, but a source file meant to be included only
// once, exclusively from allocator_shim_win_static.cc or
// allocator_shim_win_component.cc. See the top-level check.
//
// A possible alternative: rename this file to .inc, at the expense of losing
// syntax highlighting in text editors.
//
// NOLINTNEXTLINE(google-build-namespaces)
namespace {
static std::atomic<bool> g_initialization_is_done;
}

View file

@ -41,6 +41,14 @@
extern "C" {
// 1) Re-define malloc_hook weak symbols.
// This ".h" file is not a header, but a source file meant to be included only
// once, exclusively from allocator_shim.cc. See the top-level check.
//
// A possible alternative: rename this file to .inc, at the expense of losing
// syntax highlighting in text editors.
//
// NOLINTNEXTLINE(google-build-namespaces)
namespace {
void* GlibcMallocHook(size_t size, const void* caller) {

Some files were not shown because too many files have changed in this diff Show more