mirror of
https://github.com/klzgrad/naiveproxy.git
synced 2025-04-10 12:41:00 +00:00
1394 lines
55 KiB
C++
1394 lines
55 KiB
C++
// Copyright 2012 The Chromium Authors
|
|
// Use of this source code is governed by a BSD-style license that can be
|
|
// found in the LICENSE file.
|
|
|
|
// `Time` represents an absolute point in coordinated universal time (UTC),
|
|
// internally represented as microseconds (s/1,000,000) since the Windows epoch
|
|
// (1601-01-01 00:00:00 UTC). System-dependent clock interface routines are
|
|
// defined in time_PLATFORM.cc. Note that values for `Time` may skew and jump
|
|
// around as the operating system makes adjustments to synchronize (e.g., with
|
|
// NTP servers). Thus, client code that uses the `Time` class must account for
|
|
// this.
|
|
//
|
|
// `TimeDelta` represents a duration of time, internally represented in
|
|
// microseconds.
|
|
//
|
|
// `TimeTicks` and `ThreadTicks` represent an abstract time that is most of the
|
|
// time incrementing, for use in measuring time durations. Internally, they are
|
|
// represented in microseconds. They cannot be converted to a human-readable
|
|
// time, but are guaranteed not to decrease (unlike the `Time` class). Note
|
|
// that `TimeTicks` may "stand still" (e.g., if the computer is suspended), and
|
|
// `ThreadTicks` will "stand still" whenever the thread has been de-scheduled
|
|
// by the operating system.
|
|
//
|
|
// All time classes are copyable, assignable, and occupy 64 bits per instance.
|
|
// Prefer to pass them by value, e.g.:
|
|
//
|
|
// void MyFunction(TimeDelta arg);
|
|
//
|
|
// All time classes support `operator<<` with logging streams, e.g. `LOG(INFO)`.
|
|
// For human-readable formatting, use //base/i18n/time_formatting.h.
|
|
//
|
|
// Example use cases for different time classes:
|
|
//
|
|
// Time: Interpreting the wall-clock time provided by a remote system.
|
|
// Detecting whether cached resources have expired. Providing the
|
|
// user with a display of the current date and time. Determining
|
|
// the amount of time between events across re-boots of the
|
|
// machine.
|
|
//
|
|
// TimeTicks: Tracking the amount of time a task runs. Executing delayed
|
|
// tasks at the right time. Computing presentation timestamps.
|
|
// Synchronizing audio and video using TimeTicks as a common
|
|
// reference clock (lip-sync). Measuring network round-trip
|
|
// latency.
|
|
//
|
|
// ThreadTicks: Benchmarking how long the current thread has been doing actual
|
|
// work.
|
|
//
|
|
// Serialization:
|
|
//
|
|
// Use the helpers in //base/json/values_util.h when serializing `Time`
|
|
// or `TimeDelta` to/from `base::Value`.
|
|
//
|
|
// Otherwise:
|
|
//
|
|
// - Time: use `FromDeltaSinceWindowsEpoch()`/`ToDeltaSinceWindowsEpoch()`.
|
|
// - TimeDelta: use `base::Microseconds()`/`InMicroseconds()`.
|
|
//
|
|
// `TimeTicks` and `ThreadTicks` do not have a stable origin; serialization for
|
|
// the purpose of persistence is not supported.
|
|
|
|
#ifndef BASE_TIME_TIME_H_
|
|
#define BASE_TIME_TIME_H_
|
|
|
|
#include <stdint.h>
|
|
#include <time.h>
|
|
|
|
#include <compare>
|
|
#include <concepts>
|
|
#include <iosfwd>
|
|
#include <limits>
|
|
#include <ostream>
|
|
#include <type_traits>
|
|
|
|
#include "base/base_export.h"
|
|
#include "base/check.h"
|
|
#include "base/check_op.h"
|
|
#include "base/compiler_specific.h"
|
|
#include "base/numerics/clamped_math.h"
|
|
#include "build/build_config.h"
|
|
#include "build/chromeos_buildflags.h"
|
|
|
|
#if BUILDFLAG(IS_FUCHSIA)
|
|
#include <zircon/types.h>
|
|
#endif
|
|
|
|
#if BUILDFLAG(IS_APPLE)
|
|
#include <CoreFoundation/CoreFoundation.h>
|
|
#include <mach/mach_time.h>
|
|
// Avoid Mac system header macro leak.
|
|
#undef TYPE_BOOL
|
|
#endif
|
|
|
|
#if BUILDFLAG(IS_ANDROID)
|
|
#include <jni.h>
|
|
#endif
|
|
|
|
#if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
|
|
#include <unistd.h>
|
|
#include <sys/time.h>
|
|
#endif
|
|
|
|
#if BUILDFLAG(IS_WIN)
|
|
#include "base/gtest_prod_util.h"
|
|
#include "base/win/windows_types.h"
|
|
|
|
namespace ABI {
|
|
namespace Windows {
|
|
namespace Foundation {
|
|
struct DateTime;
|
|
struct TimeSpan;
|
|
} // namespace Foundation
|
|
} // namespace Windows
|
|
} // namespace ABI
|
|
#endif
|
|
|
|
namespace base {
|
|
|
|
class PlatformThreadHandle;
|
|
class TimeDelta;
|
|
|
|
template <typename T>
|
|
constexpr TimeDelta Microseconds(T n);
|
|
|
|
namespace {
|
|
|
|
// TODO: Replace usage of this with std::isnan() once Chromium uses C++23,
|
|
// where that is constexpr.
|
|
constexpr bool isnan(double d) {
|
|
return d != d;
|
|
}
|
|
|
|
}
|
|
|
|
// TimeDelta ------------------------------------------------------------------
|
|
|
|
class BASE_EXPORT TimeDelta {
|
|
public:
|
|
constexpr TimeDelta() = default;
|
|
|
|
#if BUILDFLAG(IS_WIN)
|
|
static TimeDelta FromQPCValue(LONGLONG qpc_value);
|
|
// TODO(crbug.com/989694): Avoid base::TimeDelta factory functions
|
|
// based on absolute time
|
|
static TimeDelta FromFileTime(FILETIME ft);
|
|
static TimeDelta FromWinrtDateTime(ABI::Windows::Foundation::DateTime dt);
|
|
static TimeDelta FromWinrtTimeSpan(ABI::Windows::Foundation::TimeSpan ts);
|
|
#elif BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
|
|
static TimeDelta FromTimeSpec(const timespec& ts);
|
|
#endif
|
|
#if BUILDFLAG(IS_FUCHSIA)
|
|
static TimeDelta FromZxDuration(zx_duration_t nanos);
|
|
#endif
|
|
#if BUILDFLAG(IS_APPLE)
|
|
static TimeDelta FromMachTime(uint64_t mach_time);
|
|
#endif // BUILDFLAG(IS_APPLE)
|
|
|
|
// Converts an integer value representing TimeDelta to a class. This is used
|
|
// when deserializing a |TimeDelta| structure, using a value known to be
|
|
// compatible. It is not provided as a constructor because the integer type
|
|
// may be unclear from the perspective of a caller.
|
|
//
|
|
// DEPRECATED - Do not use in new code. http://crbug.com/634507
|
|
static constexpr TimeDelta FromInternalValue(int64_t delta) {
|
|
return TimeDelta(delta);
|
|
}
|
|
|
|
// Returns the maximum time delta, which should be greater than any reasonable
|
|
// time delta we might compare it to. If converted to double with ToDouble()
|
|
// it becomes an IEEE double infinity. Use FiniteMax() if you want a very
|
|
// large number that doesn't do this. TimeDelta math saturates at the end
|
|
// points so adding to TimeDelta::Max() leaves the value unchanged.
|
|
// Subtracting should leave the value unchanged but currently changes it
|
|
// TODO(https://crbug.com/869387).
|
|
static constexpr TimeDelta Max();
|
|
|
|
// Returns the minimum time delta, which should be less than than any
|
|
// reasonable time delta we might compare it to. For more details see the
|
|
// comments for Max().
|
|
static constexpr TimeDelta Min();
|
|
|
|
// Returns the maximum time delta which is not equivalent to infinity. Only
|
|
// subtracting a finite time delta from this time delta has a defined result.
|
|
static constexpr TimeDelta FiniteMax();
|
|
|
|
// Returns the minimum time delta which is not equivalent to -infinity. Only
|
|
// adding a finite time delta to this time delta has a defined result.
|
|
static constexpr TimeDelta FiniteMin();
|
|
|
|
// Returns the internal numeric value of the TimeDelta object. Please don't
|
|
// use this and do arithmetic on it, as it is more error prone than using the
|
|
// provided operators.
|
|
// For serializing, use FromInternalValue to reconstitute.
|
|
//
|
|
// DEPRECATED - Do not use in new code. http://crbug.com/634507
|
|
constexpr int64_t ToInternalValue() const { return delta_; }
|
|
|
|
// Returns the magnitude (absolute value) of this TimeDelta.
|
|
constexpr TimeDelta magnitude() const { return TimeDelta(delta_.Abs()); }
|
|
|
|
// Returns true if the time delta is a zero, positive or negative time delta.
|
|
constexpr bool is_zero() const { return delta_ == 0; }
|
|
constexpr bool is_positive() const { return delta_ > 0; }
|
|
constexpr bool is_negative() const { return delta_ < 0; }
|
|
|
|
// Returns true if the time delta is the maximum/minimum time delta.
|
|
constexpr bool is_max() const { return *this == Max(); }
|
|
constexpr bool is_min() const { return *this == Min(); }
|
|
constexpr bool is_inf() const { return is_min() || is_max(); }
|
|
|
|
#if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
|
|
struct timespec ToTimeSpec() const;
|
|
#endif
|
|
#if BUILDFLAG(IS_FUCHSIA)
|
|
zx_duration_t ToZxDuration() const;
|
|
#endif
|
|
#if BUILDFLAG(IS_WIN)
|
|
ABI::Windows::Foundation::DateTime ToWinrtDateTime() const;
|
|
ABI::Windows::Foundation::TimeSpan ToWinrtTimeSpan() const;
|
|
#endif
|
|
|
|
// Returns the frequency in Hertz (cycles per second) that has a period of
|
|
// *this.
|
|
constexpr double ToHz() const;
|
|
|
|
// Returns the time delta in some unit. Minimum argument values return as
|
|
// -inf for doubles and min type values otherwise. Maximum ones are treated as
|
|
// +inf for doubles and max type values otherwise. Their results will produce
|
|
// an is_min() or is_max() TimeDelta. The InXYZF versions return a floating
|
|
// point value. The InXYZ versions return a truncated value (aka rounded
|
|
// towards zero, std::trunc() behavior). The InXYZFloored() versions round to
|
|
// lesser integers (std::floor() behavior). The XYZRoundedUp() versions round
|
|
// up to greater integers (std::ceil() behavior). WARNING: Floating point
|
|
// arithmetic is such that XXX(t.InXXXF()) may not precisely equal |t|.
|
|
// Hence, floating point values should not be used for storage.
|
|
constexpr int InDays() const;
|
|
constexpr int InDaysFloored() const;
|
|
constexpr int InHours() const;
|
|
constexpr int InMinutes() const;
|
|
constexpr double InSecondsF() const;
|
|
constexpr int64_t InSeconds() const;
|
|
constexpr int64_t InSecondsFloored() const;
|
|
constexpr double InMillisecondsF() const;
|
|
constexpr int64_t InMilliseconds() const;
|
|
constexpr int64_t InMillisecondsRoundedUp() const;
|
|
constexpr int64_t InMicroseconds() const { return delta_; }
|
|
constexpr double InMicrosecondsF() const;
|
|
constexpr int64_t InNanoseconds() const;
|
|
|
|
// Computations with other deltas.
|
|
constexpr TimeDelta operator+(TimeDelta other) const;
|
|
constexpr TimeDelta operator-(TimeDelta other) const;
|
|
|
|
constexpr TimeDelta& operator+=(TimeDelta other) {
|
|
return *this = (*this + other);
|
|
}
|
|
constexpr TimeDelta& operator-=(TimeDelta other) {
|
|
return *this = (*this - other);
|
|
}
|
|
constexpr TimeDelta operator-() const {
|
|
if (!is_inf())
|
|
return TimeDelta(-delta_);
|
|
return (delta_ < 0) ? Max() : Min();
|
|
}
|
|
|
|
// Computations with numeric types.
|
|
template <typename T>
|
|
constexpr TimeDelta operator*(T a) const {
|
|
return TimeDelta(int64_t{delta_ * a});
|
|
}
|
|
template <typename T>
|
|
constexpr TimeDelta operator/(T a) const {
|
|
return TimeDelta(int64_t{delta_ / a});
|
|
}
|
|
template <typename T>
|
|
constexpr TimeDelta& operator*=(T a) {
|
|
return *this = (*this * a);
|
|
}
|
|
template <typename T>
|
|
constexpr TimeDelta& operator/=(T a) {
|
|
return *this = (*this / a);
|
|
}
|
|
|
|
// This does floating-point division. For an integer result, either call
|
|
// IntDiv(), or (possibly clearer) use this operator with
|
|
// base::Clamp{Ceil,Floor,Round}() or base::saturated_cast() (for truncation).
|
|
// Note that converting to double here drops precision to 53 bits.
|
|
constexpr double operator/(TimeDelta a) const {
|
|
// 0/0 and inf/inf (any combination of positive and negative) are invalid
|
|
// (they are almost certainly not intentional, and result in NaN, which
|
|
// turns into 0 if clamped to an integer; this makes introducing subtle bugs
|
|
// too easy).
|
|
CHECK(!is_zero() || !a.is_zero());
|
|
CHECK(!is_inf() || !a.is_inf());
|
|
|
|
return ToDouble() / a.ToDouble();
|
|
}
|
|
constexpr int64_t IntDiv(TimeDelta a) const {
|
|
if (!is_inf() && !a.is_zero())
|
|
return int64_t{delta_ / a.delta_};
|
|
|
|
// For consistency, use the same edge case CHECKs and behavior as the code
|
|
// above.
|
|
CHECK(!is_zero() || !a.is_zero());
|
|
CHECK(!is_inf() || !a.is_inf());
|
|
return ((delta_ < 0) == (a.delta_ < 0))
|
|
? std::numeric_limits<int64_t>::max()
|
|
: std::numeric_limits<int64_t>::min();
|
|
}
|
|
|
|
constexpr TimeDelta operator%(TimeDelta a) const {
|
|
return TimeDelta(
|
|
(is_inf() || a.is_zero() || a.is_inf()) ? delta_ : (delta_ % a.delta_));
|
|
}
|
|
constexpr TimeDelta& operator%=(TimeDelta other) {
|
|
return *this = (*this % other);
|
|
}
|
|
|
|
// Comparison operators.
|
|
friend constexpr bool operator==(TimeDelta, TimeDelta) = default;
|
|
friend constexpr std::strong_ordering operator<=>(TimeDelta,
|
|
TimeDelta) = default;
|
|
|
|
// Returns this delta, ceiled/floored/rounded-away-from-zero to the nearest
|
|
// multiple of |interval|.
|
|
TimeDelta CeilToMultiple(TimeDelta interval) const;
|
|
TimeDelta FloorToMultiple(TimeDelta interval) const;
|
|
TimeDelta RoundToMultiple(TimeDelta interval) const;
|
|
|
|
private:
|
|
// Constructs a delta given the duration in microseconds. This is private
|
|
// to avoid confusion by callers with an integer constructor. Use
|
|
// base::Seconds, base::Milliseconds, etc. instead.
|
|
constexpr explicit TimeDelta(int64_t delta_us) : delta_(delta_us) {}
|
|
constexpr explicit TimeDelta(ClampedNumeric<int64_t> delta_us)
|
|
: delta_(delta_us) {}
|
|
|
|
// Returns a double representation of this TimeDelta's tick count. In
|
|
// particular, Max()/Min() are converted to +/-infinity.
|
|
constexpr double ToDouble() const {
|
|
if (!is_inf())
|
|
return static_cast<double>(delta_);
|
|
return (delta_ < 0) ? -std::numeric_limits<double>::infinity()
|
|
: std::numeric_limits<double>::infinity();
|
|
}
|
|
|
|
// Delta in microseconds.
|
|
ClampedNumeric<int64_t> delta_ = 0;
|
|
};
|
|
|
|
constexpr TimeDelta TimeDelta::operator+(TimeDelta other) const {
|
|
if (!other.is_inf())
|
|
return TimeDelta(delta_ + other.delta_);
|
|
|
|
// Additions involving two infinities are only valid if signs match.
|
|
CHECK(!is_inf() || (delta_ == other.delta_));
|
|
return other;
|
|
}
|
|
|
|
constexpr TimeDelta TimeDelta::operator-(TimeDelta other) const {
|
|
if (!other.is_inf())
|
|
return TimeDelta(delta_ - other.delta_);
|
|
|
|
// Subtractions involving two infinities are only valid if signs differ.
|
|
CHECK_NE(int64_t{delta_}, int64_t{other.delta_});
|
|
return (other.delta_ < 0) ? Max() : Min();
|
|
}
|
|
|
|
template <typename T>
|
|
constexpr TimeDelta operator*(T a, TimeDelta td) {
|
|
return td * a;
|
|
}
|
|
|
|
// For logging use only.
|
|
BASE_EXPORT std::ostream& operator<<(std::ostream& os, TimeDelta time_delta);
|
|
|
|
// TimeBase--------------------------------------------------------------------
|
|
|
|
// Do not reference the time_internal::TimeBase template class directly. Please
|
|
// use one of the time subclasses instead, and only reference the public
|
|
// TimeBase members via those classes.
|
|
namespace time_internal {
|
|
|
|
// Provides value storage and comparison/math operations common to all time
|
|
// classes. Each subclass provides for strong type-checking to ensure
|
|
// semantically meaningful comparison/math of time values from the same clock
|
|
// source or timeline.
|
|
template<class TimeClass>
|
|
class TimeBase {
|
|
public:
|
|
static constexpr int64_t kHoursPerDay = 24;
|
|
static constexpr int64_t kSecondsPerMinute = 60;
|
|
static constexpr int64_t kMinutesPerHour = 60;
|
|
static constexpr int64_t kSecondsPerHour =
|
|
kSecondsPerMinute * kMinutesPerHour;
|
|
static constexpr int64_t kMillisecondsPerSecond = 1000;
|
|
static constexpr int64_t kMillisecondsPerDay =
|
|
kMillisecondsPerSecond * kSecondsPerHour * kHoursPerDay;
|
|
static constexpr int64_t kMicrosecondsPerMillisecond = 1000;
|
|
static constexpr int64_t kMicrosecondsPerSecond =
|
|
kMicrosecondsPerMillisecond * kMillisecondsPerSecond;
|
|
static constexpr int64_t kMicrosecondsPerMinute =
|
|
kMicrosecondsPerSecond * kSecondsPerMinute;
|
|
static constexpr int64_t kMicrosecondsPerHour =
|
|
kMicrosecondsPerMinute * kMinutesPerHour;
|
|
static constexpr int64_t kMicrosecondsPerDay =
|
|
kMicrosecondsPerHour * kHoursPerDay;
|
|
static constexpr int64_t kMicrosecondsPerWeek = kMicrosecondsPerDay * 7;
|
|
static constexpr int64_t kNanosecondsPerMicrosecond = 1000;
|
|
static constexpr int64_t kNanosecondsPerSecond =
|
|
kNanosecondsPerMicrosecond * kMicrosecondsPerSecond;
|
|
|
|
// TODO(https://crbug.com/1392437): Remove concept of "null" from base::Time.
|
|
//
|
|
// Warning: Be careful when writing code that performs math on time values,
|
|
// since it's possible to produce a valid "zero" result that should not be
|
|
// interpreted as a "null" value. If you find yourself using this method or
|
|
// the zero-arg default constructor, please consider using an optional to
|
|
// express the null state.
|
|
//
|
|
// Returns true if this object has not been initialized (probably).
|
|
constexpr bool is_null() const { return us_ == 0; }
|
|
|
|
// Returns true if this object represents the maximum/minimum time.
|
|
constexpr bool is_max() const { return *this == Max(); }
|
|
constexpr bool is_min() const { return *this == Min(); }
|
|
constexpr bool is_inf() const { return is_min() || is_max(); }
|
|
|
|
// Returns the maximum/minimum times, which should be greater/less than than
|
|
// any reasonable time with which we might compare it.
|
|
static constexpr TimeClass Max() {
|
|
return TimeClass(std::numeric_limits<int64_t>::max());
|
|
}
|
|
|
|
static constexpr TimeClass Min() {
|
|
return TimeClass(std::numeric_limits<int64_t>::min());
|
|
}
|
|
|
|
// For legacy serialization only. When serializing to `base::Value`, prefer
|
|
// the helpers from //base/json/values_util.h instead. Otherwise, use
|
|
// `Time::ToDeltaSinceWindowsEpoch()` for `Time` and
|
|
// `TimeDelta::InMicroseconds()` for `TimeDelta`. See http://crbug.com/634507.
|
|
constexpr int64_t ToInternalValue() const { return us_; }
|
|
|
|
// The amount of time since the origin (or "zero") point. This is a syntactic
|
|
// convenience to aid in code readability, mainly for debugging/testing use
|
|
// cases.
|
|
//
|
|
// Warning: While the Time subclass has a fixed origin point, the origin for
|
|
// the other subclasses can vary each time the application is restarted.
|
|
constexpr TimeDelta since_origin() const;
|
|
|
|
// Compute the difference between two times.
|
|
#if !defined(__aarch64__) && BUILDFLAG(IS_ANDROID)
|
|
NOINLINE // https://crbug.com/1369775
|
|
#endif
|
|
constexpr TimeDelta operator-(const TimeBase<TimeClass>& other) const;
|
|
|
|
// Return a new time modified by some delta.
|
|
constexpr TimeClass operator+(TimeDelta delta) const;
|
|
constexpr TimeClass operator-(TimeDelta delta) const;
|
|
|
|
// Modify by some time delta.
|
|
constexpr TimeClass& operator+=(TimeDelta delta) {
|
|
return static_cast<TimeClass&>(*this = (*this + delta));
|
|
}
|
|
constexpr TimeClass& operator-=(TimeDelta delta) {
|
|
return static_cast<TimeClass&>(*this = (*this - delta));
|
|
}
|
|
|
|
// Comparison operators
|
|
friend constexpr bool operator==(const TimeBase&, const TimeBase&) = default;
|
|
friend constexpr std::strong_ordering operator<=>(const TimeBase&,
|
|
const TimeBase&) = default;
|
|
|
|
protected:
|
|
constexpr explicit TimeBase(int64_t us) : us_(us) {}
|
|
|
|
// Time value in a microsecond timebase.
|
|
ClampedNumeric<int64_t> us_;
|
|
};
|
|
|
|
#if BUILDFLAG(IS_WIN)
|
|
#if defined(ARCH_CPU_ARM64)
|
|
// TSCTicksPerSecond is not supported on Windows on Arm systems because the
|
|
// cycle-counting methods use the actual CPU cycle count, and not a consistent
|
|
// incrementing counter.
|
|
#else
|
|
// Returns true if the CPU support constant rate TSC.
|
|
[[nodiscard]] BASE_EXPORT bool HasConstantRateTSC();
|
|
|
|
// Returns the frequency of the TSC in ticks per second, or 0 if it hasn't
|
|
// been measured yet. Needs to be guarded with a call to HasConstantRateTSC().
|
|
[[nodiscard]] BASE_EXPORT double TSCTicksPerSecond();
|
|
#endif
|
|
#endif // BUILDFLAG(IS_WIN)
|
|
|
|
} // namespace time_internal
|
|
|
|
template <class TimeClass>
|
|
inline constexpr TimeClass operator+(TimeDelta delta, TimeClass t) {
|
|
return t + delta;
|
|
}
|
|
|
|
// Time -----------------------------------------------------------------------
|
|
|
|
// Represents a wall clock time in UTC. Values are not guaranteed to be
|
|
// monotonically non-decreasing and are subject to large amounts of skew.
|
|
// Time is stored internally as microseconds since the Windows epoch (1601).
|
|
class BASE_EXPORT Time : public time_internal::TimeBase<Time> {
|
|
public:
|
|
// Offset of UNIX epoch (1970-01-01 00:00:00 UTC) from Windows FILETIME epoch
|
|
// (1601-01-01 00:00:00 UTC), in microseconds. This value is derived from the
|
|
// following: ((1970-1601)*365+89)*24*60*60*1000*1000, where 89 is the number
|
|
// of leap year days between 1601 and 1970: (1970-1601)/4 excluding 1700,
|
|
// 1800, and 1900.
|
|
static constexpr int64_t kTimeTToMicrosecondsOffset =
|
|
INT64_C(11644473600000000);
|
|
|
|
#if BUILDFLAG(IS_WIN)
|
|
// To avoid overflow in QPC to Microseconds calculations, since we multiply
|
|
// by kMicrosecondsPerSecond, then the QPC value should not exceed
|
|
// (2^63 - 1) / 1E6. If it exceeds that threshold, we divide then multiply.
|
|
static constexpr int64_t kQPCOverflowThreshold = INT64_C(0x8637BD05AF7);
|
|
#endif
|
|
|
|
// kExplodedMinYear and kExplodedMaxYear define the platform-specific limits
|
|
// for values passed to FromUTCExploded() and FromLocalExploded(). Those
|
|
// functions will return false if passed values outside these limits. The limits
|
|
// are inclusive, meaning that the API should support all dates within a given
|
|
// limit year.
|
|
//
|
|
// WARNING: These are not the same limits for the inverse functionality,
|
|
// UTCExplode() and LocalExplode(). See method comments for further details.
|
|
#if BUILDFLAG(IS_WIN)
|
|
static constexpr int kExplodedMinYear = 1601;
|
|
static constexpr int kExplodedMaxYear = 30827;
|
|
#elif BUILDFLAG(IS_IOS) && !__LP64__
|
|
static constexpr int kExplodedMinYear = std::numeric_limits<int>::min();
|
|
static constexpr int kExplodedMaxYear = std::numeric_limits<int>::max();
|
|
#elif BUILDFLAG(IS_APPLE)
|
|
static constexpr int kExplodedMinYear = 1902;
|
|
static constexpr int kExplodedMaxYear = std::numeric_limits<int>::max();
|
|
#elif BUILDFLAG(IS_ANDROID)
|
|
// Though we use 64-bit time APIs on both 32 and 64 bit Android, some OS
|
|
// versions like KitKat (ARM but not x86 emulator) can't handle some early
|
|
// dates (e.g. before 1170). So we set min conservatively here.
|
|
static constexpr int kExplodedMinYear = 1902;
|
|
static constexpr int kExplodedMaxYear = std::numeric_limits<int>::max();
|
|
#else
|
|
static constexpr int kExplodedMinYear =
|
|
(sizeof(time_t) == 4 ? 1902 : std::numeric_limits<int>::min());
|
|
static constexpr int kExplodedMaxYear =
|
|
(sizeof(time_t) == 4 ? 2037 : std::numeric_limits<int>::max());
|
|
#endif
|
|
|
|
// Represents an exploded time. This is kind of like the Win32 SYSTEMTIME
|
|
// structure or the Unix "struct tm" with a few additions and changes to
|
|
// prevent errors.
|
|
//
|
|
// This structure always represents dates in the Gregorian calendar and always
|
|
// encodes day_of_week as Sunday==0, Monday==1, .., Saturday==6. This means
|
|
// that base::Time::LocalExplode and base::Time::FromLocalExploded only
|
|
// respect the current local time zone in the conversion and do *not* use a
|
|
// calendar or day-of-week encoding from the current locale.
|
|
//
|
|
// NOTE: Generally, you should prefer the functions in
|
|
// base/i18n/time_formatting.h (in particular,
|
|
// `UnlocalizedTimeFormatWithPattern()`) over trying to create a formatted
|
|
// time string from this object.
|
|
struct BASE_EXPORT Exploded {
|
|
int year; // Four digit year "2007"
|
|
int month; // 1-based month (values 1 = January, etc.)
|
|
int day_of_week; // 0-based day of week (0 = Sunday, etc.)
|
|
int day_of_month; // 1-based day of month (1-31)
|
|
int hour; // Hour within the current day (0-23)
|
|
int minute; // Minute within the current hour (0-59)
|
|
int second; // Second within the current minute (0-59 plus leap
|
|
// seconds which may take it up to 60).
|
|
int millisecond; // Milliseconds within the current second (0-999)
|
|
|
|
// A cursory test for whether the data members are within their
|
|
// respective ranges. A 'true' return value does not guarantee the
|
|
// Exploded value can be successfully converted to a Time value.
|
|
bool HasValidValues() const;
|
|
};
|
|
|
|
// TODO(https://crbug.com/1392437): Remove concept of "null" from base::Time.
|
|
//
|
|
// Warning: Be careful when writing code that performs math on time values,
|
|
// since it's possible to produce a valid "zero" result that should not be
|
|
// interpreted as a "null" value. If you find yourself using this constructor
|
|
// or the is_null() method, please consider using an optional to express the
|
|
// null state.
|
|
//
|
|
// Contains the NULL time. Use Time::Now() to get the current time.
|
|
constexpr Time() : TimeBase(0) {}
|
|
|
|
// Returns the time for epoch in Unix-like system (Jan 1, 1970).
|
|
static constexpr Time UnixEpoch() { return Time(kTimeTToMicrosecondsOffset); }
|
|
|
|
// Returns the current time. Watch out, the system might adjust its clock
|
|
// in which case time will actually go backwards. We don't guarantee that
|
|
// times are increasing, or that two calls to Now() won't be the same.
|
|
static Time Now();
|
|
|
|
// Returns the current time. Same as Now() except that this function always
|
|
// uses system time so that there are no discrepancies between the returned
|
|
// time and system time even on virtual environments including our test bot.
|
|
// For timing sensitive unittests, this function should be used.
|
|
static Time NowFromSystemTime();
|
|
|
|
// Converts to/from TimeDeltas relative to the Windows epoch (1601-01-01
|
|
// 00:00:00 UTC).
|
|
//
|
|
// For serialization, when handling `base::Value`, prefer the helpers in
|
|
// //base/json/values_util.h instead. Otherwise, use these methods for
|
|
// opaque serialization and deserialization, e.g.
|
|
//
|
|
// // Serialization:
|
|
// base::Time last_updated = ...;
|
|
// SaveToDatabase(last_updated.ToDeltaSinceWindowsEpoch().InMicroseconds());
|
|
//
|
|
// // Deserialization:
|
|
// base::Time last_updated = base::Time::FromDeltaSinceWindowsEpoch(
|
|
// base::Microseconds(LoadFromDatabase()));
|
|
//
|
|
// Do not use `FromInternalValue()` or `ToInternalValue()` for this purpose.
|
|
static constexpr Time FromDeltaSinceWindowsEpoch(TimeDelta delta) {
|
|
return Time(delta.InMicroseconds());
|
|
}
|
|
|
|
constexpr TimeDelta ToDeltaSinceWindowsEpoch() const {
|
|
return Microseconds(us_);
|
|
}
|
|
|
|
// Converts to/from time_t in UTC and a Time class.
|
|
static constexpr Time FromTimeT(time_t tt);
|
|
constexpr time_t ToTimeT() const;
|
|
|
|
// Converts time to/from a number of seconds since the Unix epoch (Jan 1,
|
|
// 1970).
|
|
//
|
|
// TODO(crbug.com/1495550): Add integral versions and use them.
|
|
// TODO(crbug.com/1495554): Add ...PreservingNull() versions; see comments in
|
|
// the implementation of FromSecondsSinceUnixEpoch().
|
|
static constexpr Time FromSecondsSinceUnixEpoch(double dt);
|
|
constexpr double InSecondsFSinceUnixEpoch() const;
|
|
|
|
#if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
|
|
// Converts the timespec structure to time. MacOS X 10.8.3 (and tentatively,
|
|
// earlier versions) will have the |ts|'s tv_nsec component zeroed out,
|
|
// having a 1 second resolution, which agrees with
|
|
// https://developer.apple.com/legacy/library/#technotes/tn/tn1150.html#HFSPlusDates.
|
|
static constexpr Time FromTimeSpec(const timespec& ts);
|
|
#endif
|
|
|
|
// Converts to/from a number of milliseconds since the Unix epoch.
|
|
// TODO(crbug.com/1495554): Add ...PreservingNull() versions; see comments in
|
|
// the implementation of FromMillisecondsSinceUnixEpoch().
|
|
static constexpr Time FromMillisecondsSinceUnixEpoch(int64_t dt);
|
|
static constexpr Time FromMillisecondsSinceUnixEpoch(double dt);
|
|
// Explicitly forward calls with smaller integral types to the int64_t
|
|
// version; otherwise such calls would need to manually cast their args to
|
|
// int64_t, since the compiler isn't sure whether to promote to int64_t or
|
|
// double.
|
|
template <typename T>
|
|
requires(std::integral<T> && !std::same_as<T, int64_t> &&
|
|
(sizeof(T) < sizeof(int64_t) ||
|
|
(sizeof(T) == sizeof(int64_t) && std::is_signed_v<T>)))
|
|
static constexpr Time FromMillisecondsSinceUnixEpoch(T ms_since_epoch) {
|
|
return FromMillisecondsSinceUnixEpoch(int64_t{ms_since_epoch});
|
|
}
|
|
constexpr int64_t InMillisecondsSinceUnixEpoch() const;
|
|
// Don't use InMillisecondsFSinceUnixEpoch() in new code, since it contains a
|
|
// subtle hack (only exactly 1601-01-01 00:00 UTC is represented as 1970-01-01
|
|
// 00:00 UTC), and that is not appropriate for general use. Try to use
|
|
// InMillisecondsFSinceUnixEpochIgnoringNull() unless you have a very good
|
|
// reason to use InMillisecondsFSinceUnixEpoch().
|
|
//
|
|
// TODO(crbug.com/1495554): Rename the no-suffix version to
|
|
// "...PreservingNull()" and remove the suffix from the other version, to
|
|
// guide people to the preferable API.
|
|
constexpr double InMillisecondsFSinceUnixEpoch() const;
|
|
constexpr double InMillisecondsFSinceUnixEpochIgnoringNull() const;
|
|
|
|
#if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
|
|
static Time FromTimeVal(struct timeval t);
|
|
struct timeval ToTimeVal() const;
|
|
#endif
|
|
|
|
#if BUILDFLAG(IS_FUCHSIA)
|
|
static Time FromZxTime(zx_time_t time);
|
|
zx_time_t ToZxTime() const;
|
|
#endif
|
|
|
|
#if BUILDFLAG(IS_APPLE)
|
|
static Time FromCFAbsoluteTime(CFAbsoluteTime t);
|
|
CFAbsoluteTime ToCFAbsoluteTime() const;
|
|
#if defined(__OBJC__)
|
|
static Time FromNSDate(NSDate* date);
|
|
NSDate* ToNSDate() const;
|
|
#endif
|
|
#endif
|
|
|
|
#if BUILDFLAG(IS_WIN)
|
|
static Time FromFileTime(FILETIME ft);
|
|
FILETIME ToFileTime() const;
|
|
|
|
// The minimum time of a low resolution timer. This is basically a windows
|
|
// constant of ~15.6ms. While it does vary on some older OS versions, we'll
|
|
// treat it as static across all windows versions.
|
|
static const int kMinLowResolutionThresholdMs = 16;
|
|
|
|
// Enable or disable Windows high resolution timer.
|
|
static void EnableHighResolutionTimer(bool enable);
|
|
|
|
// Activates or deactivates the high resolution timer based on the |activate|
|
|
// flag. If the HighResolutionTimer is not Enabled (see
|
|
// EnableHighResolutionTimer), this function will return false. Otherwise
|
|
// returns true. Each successful activate call must be paired with a
|
|
// subsequent deactivate call.
|
|
// All callers to activate the high resolution timer must eventually call
|
|
// this function to deactivate the high resolution timer.
|
|
static bool ActivateHighResolutionTimer(bool activate);
|
|
|
|
// Returns true if the high resolution timer is both enabled and activated.
|
|
// This is provided for testing only, and is not tracked in a thread-safe
|
|
// way.
|
|
static bool IsHighResolutionTimerInUse();
|
|
|
|
// The following two functions are used to report the fraction of elapsed time
|
|
// that the high resolution timer is activated.
|
|
// ResetHighResolutionTimerUsage() resets the cumulative usage and starts the
|
|
// measurement interval and GetHighResolutionTimerUsage() returns the
|
|
// percentage of time since the reset that the high resolution timer was
|
|
// activated.
|
|
// ResetHighResolutionTimerUsage() must be called at least once before calling
|
|
// GetHighResolutionTimerUsage(); otherwise the usage result would be
|
|
// undefined.
|
|
static void ResetHighResolutionTimerUsage();
|
|
static double GetHighResolutionTimerUsage();
|
|
#endif // BUILDFLAG(IS_WIN)
|
|
|
|
// Converts an exploded structure representing either the local time or UTC
|
|
// into a Time class. Returns false on a failure when, for example, a day of
|
|
// month is set to 31 on a 28-30 day month. Returns Time(0) on overflow.
|
|
// FromLocalExploded respects the current time zone but does not attempt to
|
|
// use the calendar or day-of-week encoding from the current locale - see the
|
|
// comments on Exploded for more information.
|
|
[[nodiscard]] static bool FromUTCExploded(const Exploded& exploded,
|
|
Time* time) {
|
|
return FromExploded(false, exploded, time);
|
|
}
|
|
[[nodiscard]] static bool FromLocalExploded(const Exploded& exploded,
|
|
Time* time) {
|
|
return FromExploded(true, exploded, time);
|
|
}
|
|
|
|
// Converts a string representation of time to a Time object.
|
|
// An example of a time string which is converted is as below:-
|
|
// "Tue, 15 Nov 1994 12:45:26 GMT". If the timezone is not specified
|
|
// in the input string, FromString assumes local time and FromUTCString
|
|
// assumes UTC. A timezone that cannot be parsed (e.g. "UTC" which is not
|
|
// specified in RFC822) is treated as if the timezone is not specified.
|
|
//
|
|
// WARNING: the underlying converter is very permissive. For example: it is
|
|
// not checked whether a given day of the week matches the date; Feb 29
|
|
// silently becomes Mar 1 in non-leap years; under certain conditions, whole
|
|
// English sentences may be parsed successfully and yield unexpected results.
|
|
//
|
|
// TODO(iyengar) Move the FromString/FromTimeT/ToTimeT/FromFileTime to
|
|
// a new time converter class.
|
|
[[nodiscard]] static bool FromString(const char* time_string,
|
|
Time* parsed_time) {
|
|
return FromStringInternal(time_string, true, parsed_time);
|
|
}
|
|
[[nodiscard]] static bool FromUTCString(const char* time_string,
|
|
Time* parsed_time) {
|
|
return FromStringInternal(time_string, false, parsed_time);
|
|
}
|
|
|
|
// Fills the given |exploded| structure with either the local time or UTC from
|
|
// this Time instance. If the conversion cannot be made, the output will be
|
|
// assigned invalid values. Use Exploded::HasValidValues() to confirm a
|
|
// successful conversion.
|
|
//
|
|
// Y10K compliance: This method will successfully convert all Times that
|
|
// represent dates on/after the start of the year 1601 and on/before the start
|
|
// of the year 30828. Some platforms might convert over a wider input range.
|
|
// LocalExplode respects the current time zone but does not attempt to use the
|
|
// calendar or day-of-week encoding from the current locale - see the comments
|
|
// on Exploded for more information.
|
|
void UTCExplode(Exploded* exploded) const { Explode(false, exploded); }
|
|
void LocalExplode(Exploded* exploded) const { Explode(true, exploded); }
|
|
|
|
// The following two functions round down the time to the nearest day in
|
|
// either UTC or local time. It will represent midnight on that day.
|
|
Time UTCMidnight() const { return Midnight(false); }
|
|
Time LocalMidnight() const { return Midnight(true); }
|
|
|
|
// For legacy deserialization only. Converts an integer value representing
|
|
// Time to a class. This may be used when deserializing a |Time| structure,
|
|
// using a value known to be compatible. It is not provided as a constructor
|
|
// because the integer type may be unclear from the perspective of a caller.
|
|
//
|
|
// DEPRECATED - Do not use in new code. When deserializing from `base::Value`,
|
|
// prefer the helpers from //base/json/values_util.h instead.
|
|
// Otherwise, use `Time::FromDeltaSinceWindowsEpoch()` for `Time` and
|
|
// `Microseconds()` for `TimeDelta`. http://crbug.com/634507
|
|
static constexpr Time FromInternalValue(int64_t us) { return Time(us); }
|
|
|
|
private:
|
|
friend class time_internal::TimeBase<Time>;
|
|
|
|
constexpr explicit Time(int64_t microseconds_since_win_epoch)
|
|
: TimeBase(microseconds_since_win_epoch) {}
|
|
|
|
// Explodes the given time to either local time |is_local = true| or UTC
|
|
// |is_local = false|.
|
|
void Explode(bool is_local, Exploded* exploded) const;
|
|
|
|
// Unexplodes a given time assuming the source is either local time
|
|
// |is_local = true| or UTC |is_local = false|. Function returns false on
|
|
// failure and sets |time| to Time(0). Otherwise returns true and sets |time|
|
|
// to non-exploded time.
|
|
[[nodiscard]] static bool FromExploded(bool is_local,
|
|
const Exploded& exploded,
|
|
Time* time);
|
|
|
|
// Some platforms use the ICU library to provide To/FromExploded, when their
|
|
// native library implementations are insufficient in some way.
|
|
#if 0
|
|
static void ExplodeUsingIcu(int64_t millis_since_unix_epoch,
|
|
bool is_local,
|
|
Exploded* exploded);
|
|
[[nodiscard]] static bool FromExplodedUsingIcu(
|
|
bool is_local,
|
|
const Exploded& exploded,
|
|
int64_t* millis_since_unix_epoch);
|
|
#endif
|
|
|
|
// Rounds down the time to the nearest day in either local time
|
|
// |is_local = true| or UTC |is_local = false|.
|
|
Time Midnight(bool is_local) const;
|
|
|
|
// Converts a string representation of time to a Time object.
|
|
// An example of a time string which is converted is as below:-
|
|
// "Tue, 15 Nov 1994 12:45:26 GMT". If the timezone is not specified
|
|
// in the input string, local time |is_local = true| or
|
|
// UTC |is_local = false| is assumed. A timezone that cannot be parsed
|
|
// (e.g. "UTC" which is not specified in RFC822) is treated as if the
|
|
// timezone is not specified.
|
|
[[nodiscard]] static bool FromStringInternal(const char* time_string,
|
|
bool is_local,
|
|
Time* parsed_time);
|
|
|
|
// Comparison does not consider |day_of_week| when doing the operation.
|
|
[[nodiscard]] static bool ExplodedMostlyEquals(const Exploded& lhs,
|
|
const Exploded& rhs);
|
|
|
|
// Converts the provided time in milliseconds since the Unix epoch (1970) to a
|
|
// Time object, avoiding overflows.
|
|
[[nodiscard]] static bool FromMillisecondsSinceUnixEpoch(
|
|
int64_t unix_milliseconds,
|
|
Time* time);
|
|
|
|
// Returns the milliseconds since the Unix epoch (1970), rounding the
|
|
// microseconds towards -infinity.
|
|
int64_t ToRoundedDownMillisecondsSinceUnixEpoch() const;
|
|
};
|
|
|
|
// Factory methods that return a TimeDelta of the given unit.
|
|
// WARNING: Floating point arithmetic is such that XXX(t.InXXXF()) may not
|
|
// precisely equal |t|. Hence, floating point values should not be used for
|
|
// storage.
|
|
|
|
template <typename T>
|
|
constexpr TimeDelta Days(T n) {
|
|
return TimeDelta::FromInternalValue(MakeClampedNum(n) *
|
|
Time::kMicrosecondsPerDay);
|
|
}
|
|
template <typename T>
|
|
constexpr TimeDelta Hours(T n) {
|
|
return TimeDelta::FromInternalValue(MakeClampedNum(n) *
|
|
Time::kMicrosecondsPerHour);
|
|
}
|
|
template <typename T>
|
|
constexpr TimeDelta Minutes(T n) {
|
|
return TimeDelta::FromInternalValue(MakeClampedNum(n) *
|
|
Time::kMicrosecondsPerMinute);
|
|
}
|
|
template <typename T>
|
|
constexpr TimeDelta Seconds(T n) {
|
|
return TimeDelta::FromInternalValue(MakeClampedNum(n) *
|
|
Time::kMicrosecondsPerSecond);
|
|
}
|
|
template <typename T>
|
|
constexpr TimeDelta Milliseconds(T n) {
|
|
return TimeDelta::FromInternalValue(MakeClampedNum(n) *
|
|
Time::kMicrosecondsPerMillisecond);
|
|
}
|
|
template <typename T>
|
|
constexpr TimeDelta Microseconds(T n) {
|
|
return TimeDelta::FromInternalValue(MakeClampedNum(n));
|
|
}
|
|
template <typename T>
|
|
constexpr TimeDelta Nanoseconds(T n) {
|
|
return TimeDelta::FromInternalValue(MakeClampedNum(n) /
|
|
Time::kNanosecondsPerMicrosecond);
|
|
}
|
|
template <typename T>
|
|
constexpr TimeDelta Hertz(T n) {
|
|
return n ? TimeDelta::FromInternalValue(Time::kMicrosecondsPerSecond /
|
|
MakeClampedNum(n))
|
|
: TimeDelta::Max();
|
|
}
|
|
|
|
// TimeDelta functions that must appear below the declarations of Time/TimeDelta
|
|
|
|
constexpr double TimeDelta::ToHz() const {
|
|
return Seconds(1) / *this;
|
|
}
|
|
|
|
constexpr int TimeDelta::InDays() const {
|
|
if (!is_inf()) {
|
|
return static_cast<int>(delta_ / Time::kMicrosecondsPerDay);
|
|
}
|
|
return (delta_ < 0) ? std::numeric_limits<int>::min()
|
|
: std::numeric_limits<int>::max();
|
|
}
|
|
|
|
constexpr int TimeDelta::InDaysFloored() const {
|
|
if (!is_inf()) {
|
|
const int result = delta_ / Time::kMicrosecondsPerDay;
|
|
// Convert |result| from truncating to flooring.
|
|
return (result * Time::kMicrosecondsPerDay > delta_) ? (result - 1)
|
|
: result;
|
|
}
|
|
return (delta_ < 0) ? std::numeric_limits<int>::min()
|
|
: std::numeric_limits<int>::max();
|
|
}
|
|
|
|
constexpr int TimeDelta::InHours() const {
|
|
// saturated_cast<> is necessary since very large (but still less than
|
|
// min/max) deltas would result in overflow.
|
|
return saturated_cast<int>(delta_ / Time::kMicrosecondsPerHour);
|
|
}
|
|
|
|
constexpr int TimeDelta::InMinutes() const {
|
|
// saturated_cast<> is necessary since very large (but still less than
|
|
// min/max) deltas would result in overflow.
|
|
return saturated_cast<int>(delta_ / Time::kMicrosecondsPerMinute);
|
|
}
|
|
|
|
constexpr double TimeDelta::InSecondsF() const {
|
|
if (!is_inf())
|
|
return static_cast<double>(delta_) / Time::kMicrosecondsPerSecond;
|
|
return (delta_ < 0) ? -std::numeric_limits<double>::infinity()
|
|
: std::numeric_limits<double>::infinity();
|
|
}
|
|
|
|
constexpr int64_t TimeDelta::InSeconds() const {
|
|
return is_inf() ? delta_ : (delta_ / Time::kMicrosecondsPerSecond);
|
|
}
|
|
|
|
constexpr int64_t TimeDelta::InSecondsFloored() const {
|
|
if (!is_inf()) {
|
|
const int64_t result = delta_ / Time::kMicrosecondsPerSecond;
|
|
// Convert |result| from truncating to flooring.
|
|
return (result * Time::kMicrosecondsPerSecond > delta_) ? (result - 1)
|
|
: result;
|
|
}
|
|
return delta_;
|
|
}
|
|
|
|
constexpr double TimeDelta::InMillisecondsF() const {
|
|
if (!is_inf()) {
|
|
return static_cast<double>(delta_) / Time::kMicrosecondsPerMillisecond;
|
|
}
|
|
return (delta_ < 0) ? -std::numeric_limits<double>::infinity()
|
|
: std::numeric_limits<double>::infinity();
|
|
}
|
|
|
|
constexpr int64_t TimeDelta::InMilliseconds() const {
|
|
if (!is_inf()) {
|
|
return delta_ / Time::kMicrosecondsPerMillisecond;
|
|
}
|
|
return (delta_ < 0) ? std::numeric_limits<int64_t>::min()
|
|
: std::numeric_limits<int64_t>::max();
|
|
}
|
|
|
|
constexpr int64_t TimeDelta::InMillisecondsRoundedUp() const {
|
|
if (!is_inf()) {
|
|
const int64_t result = delta_ / Time::kMicrosecondsPerMillisecond;
|
|
// Convert |result| from truncating to ceiling.
|
|
return (delta_ > result * Time::kMicrosecondsPerMillisecond) ? (result + 1)
|
|
: result;
|
|
}
|
|
return delta_;
|
|
}
|
|
|
|
constexpr double TimeDelta::InMicrosecondsF() const {
|
|
if (!is_inf()) {
|
|
return static_cast<double>(delta_);
|
|
}
|
|
return (delta_ < 0) ? -std::numeric_limits<double>::infinity()
|
|
: std::numeric_limits<double>::infinity();
|
|
}
|
|
|
|
constexpr int64_t TimeDelta::InNanoseconds() const {
|
|
return base::ClampMul(delta_, Time::kNanosecondsPerMicrosecond);
|
|
}
|
|
|
|
// static
|
|
constexpr TimeDelta TimeDelta::Max() {
|
|
return TimeDelta(std::numeric_limits<int64_t>::max());
|
|
}
|
|
|
|
// static
|
|
constexpr TimeDelta TimeDelta::Min() {
|
|
return TimeDelta(std::numeric_limits<int64_t>::min());
|
|
}
|
|
|
|
// static
|
|
constexpr TimeDelta TimeDelta::FiniteMax() {
|
|
return TimeDelta(std::numeric_limits<int64_t>::max() - 1);
|
|
}
|
|
|
|
// static
|
|
constexpr TimeDelta TimeDelta::FiniteMin() {
|
|
return TimeDelta(std::numeric_limits<int64_t>::min() + 1);
|
|
}
|
|
|
|
// TimeBase functions that must appear below the declarations of Time/TimeDelta
|
|
namespace time_internal {
|
|
|
|
template <class TimeClass>
|
|
constexpr TimeDelta TimeBase<TimeClass>::since_origin() const {
|
|
return Microseconds(us_);
|
|
}
|
|
|
|
template <class TimeClass>
|
|
constexpr TimeDelta TimeBase<TimeClass>::operator-(
|
|
const TimeBase<TimeClass>& other) const {
|
|
return Microseconds(us_ - other.us_);
|
|
}
|
|
|
|
template <class TimeClass>
|
|
constexpr TimeClass TimeBase<TimeClass>::operator+(TimeDelta delta) const {
|
|
return TimeClass((Microseconds(us_) + delta).InMicroseconds());
|
|
}
|
|
|
|
template <class TimeClass>
|
|
constexpr TimeClass TimeBase<TimeClass>::operator-(TimeDelta delta) const {
|
|
return TimeClass((Microseconds(us_) - delta).InMicroseconds());
|
|
}
|
|
|
|
} // namespace time_internal
|
|
|
|
// Time functions that must appear below the declarations of Time/TimeDelta
|
|
|
|
// static
|
|
constexpr Time Time::FromTimeT(time_t tt) {
|
|
if (tt == 0)
|
|
return Time(); // Preserve 0 so we can tell it doesn't exist.
|
|
return (tt == std::numeric_limits<time_t>::max())
|
|
? Max()
|
|
: (UnixEpoch() + Seconds(tt));
|
|
}
|
|
|
|
constexpr time_t Time::ToTimeT() const {
|
|
if (is_null()) {
|
|
return 0; // Preserve 0 so we can tell it doesn't exist.
|
|
}
|
|
if (!is_inf()) {
|
|
return saturated_cast<time_t>((*this - UnixEpoch()).InSecondsFloored());
|
|
}
|
|
return (us_ < 0) ? std::numeric_limits<time_t>::min()
|
|
: std::numeric_limits<time_t>::max();
|
|
}
|
|
|
|
// static
|
|
constexpr Time Time::FromSecondsSinceUnixEpoch(double dt) {
|
|
// Preserve 0.
|
|
//
|
|
// TODO(crbug.com/1495554): This is an unfortunate artifact of WebKit using 0
|
|
// to mean "no time". Add a "...PreservingNull()" version that does this,
|
|
// convert the minimum necessary set of callers to use it, and remove the zero
|
|
// check here.
|
|
return (dt == 0 || isnan(dt)) ? Time() : (UnixEpoch() + Seconds(dt));
|
|
}
|
|
|
|
constexpr double Time::InSecondsFSinceUnixEpoch() const {
|
|
// Preserve 0.
|
|
if (is_null()) {
|
|
return 0;
|
|
}
|
|
if (!is_inf()) {
|
|
return (*this - UnixEpoch()).InSecondsF();
|
|
}
|
|
return (us_ < 0) ? -std::numeric_limits<double>::infinity()
|
|
: std::numeric_limits<double>::infinity();
|
|
}
|
|
|
|
#if BUILDFLAG(IS_POSIX) || BUILDFLAG(IS_FUCHSIA)
|
|
// static
|
|
constexpr Time Time::FromTimeSpec(const timespec& ts) {
|
|
return FromSecondsSinceUnixEpoch(ts.tv_sec + static_cast<double>(ts.tv_nsec) /
|
|
kNanosecondsPerSecond);
|
|
}
|
|
#endif
|
|
|
|
// static
|
|
constexpr Time Time::FromMillisecondsSinceUnixEpoch(int64_t dt) {
|
|
// TODO(crbug.com/1495554): The lack of zero-preservation here doesn't match
|
|
// InMillisecondsSinceUnixEpoch(), which is dangerous since it means
|
|
// round-trips are not necessarily idempotent. Add "...PreservingNull()"
|
|
// versions that explicitly check for zeros, convert the minimum necessary set
|
|
// of callers to use them, and remove the null-check in
|
|
// InMillisecondsSinceUnixEpoch().
|
|
return UnixEpoch() + Milliseconds(dt);
|
|
}
|
|
|
|
// static
|
|
constexpr Time Time::FromMillisecondsSinceUnixEpoch(double dt) {
|
|
return isnan(dt) ? Time() : (UnixEpoch() + Milliseconds(dt));
|
|
}
|
|
|
|
constexpr int64_t Time::InMillisecondsSinceUnixEpoch() const {
|
|
// Preserve 0.
|
|
if (is_null()) {
|
|
return 0;
|
|
}
|
|
if (!is_inf()) {
|
|
return (*this - UnixEpoch()).InMilliseconds();
|
|
}
|
|
return (us_ < 0) ? std::numeric_limits<int64_t>::min()
|
|
: std::numeric_limits<int64_t>::max();
|
|
}
|
|
|
|
constexpr double Time::InMillisecondsFSinceUnixEpoch() const {
|
|
// Preserve 0.
|
|
return is_null() ? 0 : InMillisecondsFSinceUnixEpochIgnoringNull();
|
|
}
|
|
|
|
constexpr double Time::InMillisecondsFSinceUnixEpochIgnoringNull() const {
|
|
// Preserve max and min without offset to prevent over/underflow.
|
|
if (!is_inf()) {
|
|
return (*this - UnixEpoch()).InMillisecondsF();
|
|
}
|
|
return (us_ < 0) ? -std::numeric_limits<double>::infinity()
|
|
: std::numeric_limits<double>::infinity();
|
|
}
|
|
|
|
// For logging use only.
|
|
BASE_EXPORT std::ostream& operator<<(std::ostream& os, Time time);
|
|
|
|
// TimeTicks ------------------------------------------------------------------
|
|
|
|
// Represents monotonically non-decreasing clock time.
|
|
class BASE_EXPORT TimeTicks : public time_internal::TimeBase<TimeTicks> {
|
|
public:
|
|
// The underlying clock used to generate new TimeTicks.
|
|
enum class Clock {
|
|
FUCHSIA_ZX_CLOCK_MONOTONIC,
|
|
LINUX_CLOCK_MONOTONIC,
|
|
IOS_CF_ABSOLUTE_TIME_MINUS_KERN_BOOTTIME,
|
|
MAC_MACH_ABSOLUTE_TIME,
|
|
WIN_QPC,
|
|
WIN_ROLLOVER_PROTECTED_TIME_GET_TIME
|
|
};
|
|
|
|
constexpr TimeTicks() : TimeBase(0) {}
|
|
|
|
// Platform-dependent tick count representing "right now." When
|
|
// IsHighResolution() returns false, the resolution of the clock could be
|
|
// as coarse as ~15.6ms. Otherwise, the resolution should be no worse than one
|
|
// microsecond.
|
|
static TimeTicks Now();
|
|
|
|
// Returns true if the high resolution clock is working on this system and
|
|
// Now() will return high resolution values. Note that, on systems where the
|
|
// high resolution clock works but is deemed inefficient, the low resolution
|
|
// clock will be used instead.
|
|
[[nodiscard]] static bool IsHighResolution();
|
|
|
|
// Returns true if TimeTicks is consistent across processes, meaning that
|
|
// timestamps taken on different processes can be safely compared with one
|
|
// another. (Note that, even on platforms where this returns true, time values
|
|
// from different threads that are within one tick of each other must be
|
|
// considered to have an ambiguous ordering.)
|
|
[[nodiscard]] static bool IsConsistentAcrossProcesses();
|
|
|
|
#if BUILDFLAG(IS_FUCHSIA)
|
|
// Converts between TimeTicks and an ZX_CLOCK_MONOTONIC zx_time_t value.
|
|
static TimeTicks FromZxTime(zx_time_t nanos_since_boot);
|
|
zx_time_t ToZxTime() const;
|
|
#endif
|
|
|
|
#if BUILDFLAG(IS_WIN)
|
|
// Translates an absolute QPC timestamp into a TimeTicks value. The returned
|
|
// value has the same origin as Now(). Do NOT attempt to use this if
|
|
// IsHighResolution() returns false.
|
|
static TimeTicks FromQPCValue(LONGLONG qpc_value);
|
|
#endif
|
|
|
|
#if BUILDFLAG(IS_APPLE)
|
|
static TimeTicks FromMachAbsoluteTime(uint64_t mach_absolute_time);
|
|
|
|
// Sets the current Mach timebase to `timebase`. Returns the old timebase.
|
|
static mach_timebase_info_data_t SetMachTimebaseInfoForTesting(
|
|
mach_timebase_info_data_t timebase);
|
|
|
|
#endif // BUILDFLAG(IS_APPLE)
|
|
|
|
#if BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_CHROMEOS_ASH)
|
|
// Converts to TimeTicks the value obtained from SystemClock.uptimeMillis().
|
|
// Note: this conversion may be non-monotonic in relation to previously
|
|
// obtained TimeTicks::Now() values because of the truncation (to
|
|
// milliseconds) performed by uptimeMillis().
|
|
static TimeTicks FromUptimeMillis(int64_t uptime_millis_value);
|
|
|
|
#endif // BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_CHROMEOS_ASH)
|
|
|
|
#if BUILDFLAG(IS_ANDROID)
|
|
// Converts to TimeTicks the value obtained from System.nanoTime(). This
|
|
// conversion will be monotonic in relation to previously obtained
|
|
// TimeTicks::Now() values as the clocks are based on the same posix monotonic
|
|
// clock, with nanoTime() potentially providing higher resolution.
|
|
static TimeTicks FromJavaNanoTime(int64_t nano_time_value);
|
|
|
|
// Truncates the TimeTicks value to the precision of SystemClock#uptimeMillis.
|
|
// Note that the clocks already share the same monotonic clock source.
|
|
jlong ToUptimeMillis() const;
|
|
|
|
// Returns the TimeTicks value as microseconds in the timebase of
|
|
// SystemClock#uptimeMillis.
|
|
// Note that the clocks already share the same monotonic clock source.
|
|
//
|
|
// System.nanoTime() may be used to get sub-millisecond precision in Java code
|
|
// and may be compared against this value as the two share the same clock
|
|
// source (though be sure to convert nanos to micros).
|
|
jlong ToUptimeMicros() const;
|
|
|
|
#endif // BUILDFLAG(IS_ANDROID)
|
|
|
|
// Get an estimate of the TimeTick value at the time of the UnixEpoch. Because
|
|
// Time and TimeTicks respond differently to user-set time and NTP
|
|
// adjustments, this number is only an estimate. Nevertheless, this can be
|
|
// useful when you need to relate the value of TimeTicks to a real time and
|
|
// date. Note: Upon first invocation, this function takes a snapshot of the
|
|
// realtime clock to establish a reference point. This function will return
|
|
// the same value for the duration of the application, but will be different
|
|
// in future application runs.
|
|
static TimeTicks UnixEpoch();
|
|
|
|
static void SetSharedUnixEpoch(TimeTicks);
|
|
|
|
// Returns |this| snapped to the next tick, given a |tick_phase| and
|
|
// repeating |tick_interval| in both directions. |this| may be before,
|
|
// after, or equal to the |tick_phase|.
|
|
TimeTicks SnappedToNextTick(TimeTicks tick_phase,
|
|
TimeDelta tick_interval) const;
|
|
|
|
// Returns an enum indicating the underlying clock being used to generate
|
|
// TimeTicks timestamps. This function should only be used for debugging and
|
|
// logging purposes.
|
|
static Clock GetClock();
|
|
|
|
// Converts an integer value representing TimeTicks to a class. This may be
|
|
// used when deserializing a |TimeTicks| structure, using a value known to be
|
|
// compatible. It is not provided as a constructor because the integer type
|
|
// may be unclear from the perspective of a caller.
|
|
//
|
|
// DEPRECATED - Do not use in new code. For deserializing TimeTicks values,
|
|
// prefer TimeTicks + TimeDelta(); however, be aware that the origin is not
|
|
// fixed and may vary. Serializing for persistence is strongly discouraged.
|
|
// http://crbug.com/634507
|
|
static constexpr TimeTicks FromInternalValue(int64_t us) {
|
|
return TimeTicks(us);
|
|
}
|
|
|
|
protected:
|
|
#if BUILDFLAG(IS_WIN)
|
|
typedef DWORD (*TickFunctionType)(void);
|
|
static TickFunctionType SetMockTickFunction(TickFunctionType ticker);
|
|
#endif
|
|
|
|
private:
|
|
friend class time_internal::TimeBase<TimeTicks>;
|
|
|
|
// Please use Now() to create a new object. This is for internal use
|
|
// and testing.
|
|
constexpr explicit TimeTicks(int64_t us) : TimeBase(us) {}
|
|
};
|
|
|
|
// For logging use only.
|
|
BASE_EXPORT std::ostream& operator<<(std::ostream& os, TimeTicks time_ticks);
|
|
|
|
// LiveTicks ------------------------------------------------------------------
|
|
|
|
// Behaves similarly to `TimeTicks` (a monotonically non-decreasing clock time)
|
|
// with the main difference being that `LiveTicks` is guaranteed not to advance
|
|
// while the system is suspended.
|
|
class BASE_EXPORT LiveTicks : public time_internal::TimeBase<LiveTicks> {
|
|
public:
|
|
constexpr LiveTicks() : TimeBase(0) {}
|
|
static LiveTicks Now();
|
|
|
|
private:
|
|
friend class time_internal::TimeBase<LiveTicks>;
|
|
|
|
// Please use Now() to create a new object. This is for internal use
|
|
// and testing.
|
|
constexpr explicit LiveTicks(int64_t us) : TimeBase(us) {}
|
|
};
|
|
|
|
// ThreadTicks ----------------------------------------------------------------
|
|
|
|
// Represents a clock, specific to a particular thread, than runs only while the
|
|
// thread is running.
|
|
class BASE_EXPORT ThreadTicks : public time_internal::TimeBase<ThreadTicks> {
|
|
public:
|
|
constexpr ThreadTicks() : TimeBase(0) {}
|
|
|
|
// Returns true if ThreadTicks::Now() is supported on this system.
|
|
[[nodiscard]] static bool IsSupported() {
|
|
#if (defined(_POSIX_THREAD_CPUTIME) && (_POSIX_THREAD_CPUTIME >= 0)) || \
|
|
BUILDFLAG(IS_APPLE) || BUILDFLAG(IS_ANDROID) || BUILDFLAG(IS_FUCHSIA)
|
|
return true;
|
|
#elif BUILDFLAG(IS_WIN)
|
|
return IsSupportedWin();
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
// Waits until the initialization is completed. Needs to be guarded with a
|
|
// call to IsSupported().
|
|
static void WaitUntilInitialized() {
|
|
#if BUILDFLAG(IS_WIN)
|
|
WaitUntilInitializedWin();
|
|
#endif
|
|
}
|
|
|
|
// Returns thread-specific CPU-time on systems that support this feature.
|
|
// Needs to be guarded with a call to IsSupported(). Use this timer
|
|
// to (approximately) measure how much time the calling thread spent doing
|
|
// actual work vs. being de-scheduled. May return bogus results if the thread
|
|
// migrates to another CPU between two calls. Returns an empty ThreadTicks
|
|
// object until the initialization is completed. If a clock reading is
|
|
// absolutely needed, call WaitUntilInitialized() before this method.
|
|
static ThreadTicks Now();
|
|
|
|
#if BUILDFLAG(IS_WIN)
|
|
// Similar to Now() above except this returns thread-specific CPU time for an
|
|
// arbitrary thread. All comments for Now() method above apply apply to this
|
|
// method as well.
|
|
static ThreadTicks GetForThread(const PlatformThreadHandle& thread_handle);
|
|
#endif
|
|
|
|
// Converts an integer value representing ThreadTicks to a class. This may be
|
|
// used when deserializing a |ThreadTicks| structure, using a value known to
|
|
// be compatible. It is not provided as a constructor because the integer type
|
|
// may be unclear from the perspective of a caller.
|
|
//
|
|
// DEPRECATED - Do not use in new code. For deserializing ThreadTicks values,
|
|
// prefer ThreadTicks + TimeDelta(); however, be aware that the origin is not
|
|
// fixed and may vary. Serializing for persistence is strongly
|
|
// discouraged. http://crbug.com/634507
|
|
static constexpr ThreadTicks FromInternalValue(int64_t us) {
|
|
return ThreadTicks(us);
|
|
}
|
|
|
|
private:
|
|
friend class time_internal::TimeBase<ThreadTicks>;
|
|
|
|
// Please use Now() or GetForThread() to create a new object. This is for
|
|
// internal use and testing.
|
|
constexpr explicit ThreadTicks(int64_t us) : TimeBase(us) {}
|
|
|
|
#if BUILDFLAG(IS_WIN)
|
|
[[nodiscard]] static bool IsSupportedWin();
|
|
static void WaitUntilInitializedWin();
|
|
#endif
|
|
};
|
|
|
|
// For logging use only.
|
|
BASE_EXPORT std::ostream& operator<<(std::ostream& os, ThreadTicks time_ticks);
|
|
|
|
} // namespace base
|
|
|
|
#endif // BASE_TIME_TIME_H_
|