Clash.Meta/transport/anytls/skiplist/skiplist.go
2025-02-17 19:43:58 +08:00

457 lines
12 KiB
Go

package skiplist
// This implementation is based on https://github.com/liyue201/gostl/tree/master/ds/skiplist
// (many thanks), added many optimizations, such as:
//
// - adaptive level
// - lesser search for prevs when key already exists.
// - reduce memory allocations
// - richer interface.
//
// etc.
import (
"math/bits"
"math/rand"
"time"
)
const (
skipListMaxLevel = 40
)
// SkipList is a probabilistic data structure that seem likely to supplant balanced trees as the
// implementation method of choice for many applications. Skip list algorithms have the same
// asymptotic expected time bounds as balanced trees and are simpler, faster and use less space.
//
// See https://en.wikipedia.org/wiki/Skip_list for more details.
type SkipList[K any, V any] struct {
level int // Current level, may increase dynamically during insertion
len int // Total elements numner in the skiplist.
head skipListNode[K, V] // head.next[level] is the head of each level.
// This cache is used to save the previous nodes when modifying the skip list to avoid
// allocating memory each time it is called.
prevsCache []*skipListNode[K, V]
rander *rand.Rand
impl skipListImpl[K, V]
}
// NewSkipList creates a new SkipList for Ordered key type.
func NewSkipList[K Ordered, V any]() *SkipList[K, V] {
sl := skipListOrdered[K, V]{}
sl.init()
sl.impl = (skipListImpl[K, V])(&sl)
return &sl.SkipList
}
// NewSkipListFromMap creates a new SkipList from a map.
func NewSkipListFromMap[K Ordered, V any](m map[K]V) *SkipList[K, V] {
sl := NewSkipList[K, V]()
for k, v := range m {
sl.Insert(k, v)
}
return sl
}
// NewSkipListFunc creates a new SkipList with specified compare function keyCmp.
func NewSkipListFunc[K any, V any](keyCmp CompareFn[K]) *SkipList[K, V] {
sl := skipListFunc[K, V]{}
sl.init()
sl.keyCmp = keyCmp
sl.impl = skipListImpl[K, V](&sl)
return &sl.SkipList
}
// IsEmpty implements the Container interface.
func (sl *SkipList[K, V]) IsEmpty() bool {
return sl.len == 0
}
// Len implements the Container interface.
func (sl *SkipList[K, V]) Len() int {
return sl.len
}
// Clear implements the Container interface.
func (sl *SkipList[K, V]) Clear() {
for i := range sl.head.next {
sl.head.next[i] = nil
}
sl.level = 1
sl.len = 0
}
// Iterate return an iterator to the skiplist.
func (sl *SkipList[K, V]) Iterate() MapIterator[K, V] {
return &skipListIterator[K, V]{sl.head.next[0], nil}
}
// Insert inserts a key-value pair into the skiplist.
// If the key is already in the skip list, it's value will be updated.
func (sl *SkipList[K, V]) Insert(key K, value V) {
node, prevs := sl.impl.findInsertPoint(key)
if node != nil {
// Already exist, update the value
node.value = value
return
}
level := sl.randomLevel()
node = newSkipListNode(level, key, value)
minLevel := level
if sl.level < level {
minLevel = sl.level
}
for i := 0; i < minLevel; i++ {
node.next[i] = prevs[i].next[i]
prevs[i].next[i] = node
}
if level > sl.level {
for i := sl.level; i < level; i++ {
sl.head.next[i] = node
}
sl.level = level
}
sl.len++
}
// Find returns the value associated with the passed key if the key is in the skiplist, otherwise
// returns nil.
func (sl *SkipList[K, V]) Find(key K) *V {
node := sl.impl.findNode(key)
if node != nil {
return &node.value
}
return nil
}
// Has implement the Map interface.
func (sl *SkipList[K, V]) Has(key K) bool {
return sl.impl.findNode(key) != nil
}
// LowerBound returns an iterator to the first element in the skiplist that
// does not satisfy element < value (i.e. greater or equal to),
// or a end itetator if no such element is found.
func (sl *SkipList[K, V]) LowerBound(key K) MapIterator[K, V] {
return &skipListIterator[K, V]{sl.impl.lowerBound(key), nil}
}
// UpperBound returns an iterator to the first element in the skiplist that
// does not satisfy value < element (i.e. strictly greater),
// or a end itetator if no such element is found.
func (sl *SkipList[K, V]) UpperBound(key K) MapIterator[K, V] {
return &skipListIterator[K, V]{sl.impl.upperBound(key), nil}
}
// FindRange returns an iterator in range [first, last) (last is not includeed).
func (sl *SkipList[K, V]) FindRange(first, last K) MapIterator[K, V] {
return &skipListIterator[K, V]{sl.impl.lowerBound(first), sl.impl.upperBound(last)}
}
// Remove removes the key-value pair associated with the passed key and returns true if the key is
// in the skiplist, otherwise returns false.
func (sl *SkipList[K, V]) Remove(key K) bool {
node, prevs := sl.impl.findRemovePoint(key)
if node == nil {
return false
}
for i, v := range node.next {
prevs[i].next[i] = v
}
for sl.level > 1 && sl.head.next[sl.level-1] == nil {
sl.level--
}
sl.len--
return true
}
// ForEach implements the Map interface.
func (sl *SkipList[K, V]) ForEach(op func(K, V)) {
for e := sl.head.next[0]; e != nil; e = e.next[0] {
op(e.key, e.value)
}
}
// ForEachMutable implements the Map interface.
func (sl *SkipList[K, V]) ForEachMutable(op func(K, *V)) {
for e := sl.head.next[0]; e != nil; e = e.next[0] {
op(e.key, &e.value)
}
}
// ForEachIf implements the Map interface.
func (sl *SkipList[K, V]) ForEachIf(op func(K, V) bool) {
for e := sl.head.next[0]; e != nil; e = e.next[0] {
if !op(e.key, e.value) {
return
}
}
}
// ForEachMutableIf implements the Map interface.
func (sl *SkipList[K, V]) ForEachMutableIf(op func(K, *V) bool) {
for e := sl.head.next[0]; e != nil; e = e.next[0] {
if !op(e.key, &e.value) {
return
}
}
}
/// SkipList implementation part.
type skipListNode[K any, V any] struct {
key K
value V
next []*skipListNode[K, V]
}
//go:generate bash ./skiplist_newnode_generate.sh skipListMaxLevel skiplist_newnode.go
// func newSkipListNode[K Ordered, V any](level int, key K, value V) *skipListNode[K, V]
type skipListIterator[K any, V any] struct {
node, end *skipListNode[K, V]
}
func (it *skipListIterator[K, V]) IsNotEnd() bool {
return it.node != it.end
}
func (it *skipListIterator[K, V]) MoveToNext() {
it.node = it.node.next[0]
}
func (it *skipListIterator[K, V]) Key() K {
return it.node.key
}
func (it *skipListIterator[K, V]) Value() V {
return it.node.value
}
// skipListImpl is an interface to provide different implementation for Ordered key or CompareFn.
//
// We can use CompareFn to cumpare Ordered keys, but a separated implementation is much faster.
// We don't make the whole skip list an interface, in order to share the type independented method.
// And because these methods are called directly without going through the interface, they are also
// much faster.
type skipListImpl[K any, V any] interface {
findNode(key K) *skipListNode[K, V]
lowerBound(key K) *skipListNode[K, V]
upperBound(key K) *skipListNode[K, V]
findInsertPoint(key K) (*skipListNode[K, V], []*skipListNode[K, V])
findRemovePoint(key K) (*skipListNode[K, V], []*skipListNode[K, V])
}
func (sl *SkipList[K, V]) init() {
sl.level = 1
// #nosec G404 -- This is not a security condition
sl.rander = rand.New(rand.NewSource(time.Now().Unix()))
sl.prevsCache = make([]*skipListNode[K, V], skipListMaxLevel)
sl.head.next = make([]*skipListNode[K, V], skipListMaxLevel)
}
func (sl *SkipList[K, V]) randomLevel() int {
total := uint64(1)<<uint64(skipListMaxLevel) - 1 // 2^n-1
k := sl.rander.Uint64() % total
level := skipListMaxLevel - bits.Len64(k) + 1
// Since levels are randomly generated, most should be less than log2(s.len).
// Then make a limit according to sl.len to avoid unexpectedly large value.
for level > 3 && 1<<(level-3) > sl.len {
level--
}
return level
}
/// skipListOrdered part
// skipListOrdered is the skip list implementation for Ordered types.
type skipListOrdered[K Ordered, V any] struct {
SkipList[K, V]
}
func (sl *skipListOrdered[K, V]) findNode(key K) *skipListNode[K, V] {
return sl.doFindNode(key, true)
}
func (sl *skipListOrdered[K, V]) doFindNode(key K, eq bool) *skipListNode[K, V] {
// This function execute the job of findNode if eq is true, otherwise lowBound.
// Passing the control variable eq is ugly but it's faster than testing node
// again outside the function in findNode.
prev := &sl.head
for i := sl.level - 1; i >= 0; i-- {
for cur := prev.next[i]; cur != nil; cur = cur.next[i] {
if cur.key == key {
return cur
}
if cur.key > key {
// All other node in this level must be greater than the key,
// search the next level.
break
}
prev = cur
}
}
if eq {
return nil
}
return prev.next[0]
}
func (sl *skipListOrdered[K, V]) lowerBound(key K) *skipListNode[K, V] {
return sl.doFindNode(key, false)
}
func (sl *skipListOrdered[K, V]) upperBound(key K) *skipListNode[K, V] {
node := sl.lowerBound(key)
if node != nil && node.key == key {
return node.next[0]
}
return node
}
// findInsertPoint returns (*node, nil) to the existed node if the key exists,
// or (nil, []*node) to the previous nodes if the key doesn't exist
func (sl *skipListOrdered[K, V]) findInsertPoint(key K) (*skipListNode[K, V], []*skipListNode[K, V]) {
prevs := sl.prevsCache[0:sl.level]
prev := &sl.head
for i := sl.level - 1; i >= 0; i-- {
for next := prev.next[i]; next != nil; next = next.next[i] {
if next.key == key {
// The key is already existed, prevs are useless because no new node insertion.
// stop searching.
return next, nil
}
if next.key > key {
// All other node in this level must be greater than the key,
// search the next level.
break
}
prev = next
}
prevs[i] = prev
}
return nil, prevs
}
// findRemovePoint finds the node which match the key and it's previous nodes.
func (sl *skipListOrdered[K, V]) findRemovePoint(key K) (*skipListNode[K, V], []*skipListNode[K, V]) {
prevs := sl.findPrevNodes(key)
node := prevs[0].next[0]
if node == nil || node.key != key {
return nil, nil
}
return node, prevs
}
func (sl *skipListOrdered[K, V]) findPrevNodes(key K) []*skipListNode[K, V] {
prevs := sl.prevsCache[0:sl.level]
prev := &sl.head
for i := sl.level - 1; i >= 0; i-- {
for next := prev.next[i]; next != nil; next = next.next[i] {
if next.key >= key {
break
}
prev = next
}
prevs[i] = prev
}
return prevs
}
/// skipListFunc part
// skipListFunc is the skip list implementation which compare keys with func.
type skipListFunc[K any, V any] struct {
SkipList[K, V]
keyCmp CompareFn[K]
}
func (sl *skipListFunc[K, V]) findNode(key K) *skipListNode[K, V] {
node := sl.lowerBound(key)
if node != nil && sl.keyCmp(node.key, key) == 0 {
return node
}
return nil
}
func (sl *skipListFunc[K, V]) lowerBound(key K) *skipListNode[K, V] {
var prev = &sl.head
for i := sl.level - 1; i >= 0; i-- {
cur := prev.next[i]
for ; cur != nil; cur = cur.next[i] {
cmpRet := sl.keyCmp(cur.key, key)
if cmpRet == 0 {
return cur
}
if cmpRet > 0 {
break
}
prev = cur
}
}
return prev.next[0]
}
func (sl *skipListFunc[K, V]) upperBound(key K) *skipListNode[K, V] {
node := sl.lowerBound(key)
if node != nil && sl.keyCmp(node.key, key) == 0 {
return node.next[0]
}
return node
}
// findInsertPoint returns (*node, nil) to the existed node if the key exists,
// or (nil, []*node) to the previous nodes if the key doesn't exist
func (sl *skipListFunc[K, V]) findInsertPoint(key K) (*skipListNode[K, V], []*skipListNode[K, V]) {
prevs := sl.prevsCache[0:sl.level]
prev := &sl.head
for i := sl.level - 1; i >= 0; i-- {
for cur := prev.next[i]; cur != nil; cur = cur.next[i] {
r := sl.keyCmp(cur.key, key)
if r == 0 {
// The key is already existed, prevs are useless because no new node insertion.
// stop searching.
return cur, nil
}
if r > 0 {
// All other node in this level must be greater than the key,
// search the next level.
break
}
prev = cur
}
prevs[i] = prev
}
return nil, prevs
}
// findRemovePoint finds the node which match the key and it's previous nodes.
func (sl *skipListFunc[K, V]) findRemovePoint(key K) (*skipListNode[K, V], []*skipListNode[K, V]) {
prevs := sl.findPrevNodes(key)
node := prevs[0].next[0]
if node == nil || sl.keyCmp(node.key, key) != 0 {
return nil, nil
}
return node, prevs
}
func (sl *skipListFunc[K, V]) findPrevNodes(key K) []*skipListNode[K, V] {
prevs := sl.prevsCache[0:sl.level]
prev := &sl.head
for i := sl.level - 1; i >= 0; i-- {
for next := prev.next[i]; next != nil; next = next.next[i] {
if sl.keyCmp(next.key, key) >= 0 {
break
}
prev = next
}
prevs[i] = prev
}
return prevs
}